Discovering hidden layers in quantum graphs.

Finding hidden layers in complex networks is an important and a nontrivial problem in modern science. We explore the framework of quantum graphs to determine whether concealed parts of a multilayer system exist and if so then what is their extent, i.e., how many unknown layers are there. Assuming that the only information available is the time evolution of a wave propagation on a single layer of a network it is indeed possible to uncover that which is hidden by merely observing the dynamics. We present evidence on both synthetic and real-world networks that the frequency spectrum of the wave dynamics can express distinct features in the form of additional frequency peaks. These peaks exhibit dependence on the number of layers taking part in the propagation and thus allowing for the extraction of said number. We show that, in fact, with sufficient observation time, one can fully reconstruct the row-normalized adjacency matrix spectrum. We compare our propositions to a machine learning approach using a wave packet signature method modified for the purposes of multilayer systems.

[1]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[2]  Michael Robinson,et al.  Imaging geometric graphs using internal measurements , 2016 .

[3]  Gregor Leban,et al.  A calibrated measure to compare fluctuations of different entities across timescales , 2020, Scientific Reports.

[4]  F. Cacace,et al.  Karpelevich Theorem and the positive realization of matrices , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[5]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[6]  Jure Leskovec,et al.  Inferring Networks of Diffusion and Influence , 2012, ACM Trans. Knowl. Discov. Data.

[7]  Katarzyna Sznajd-Weron,et al.  Tricriticality in the q-neighbor Ising model on a partially duplex clique. , 2016, Physical review. E.

[8]  Jean Pouget-Abadie,et al.  Inferring Graphs from Cascades: A Sparse Recovery Framework , 2015, ICML.

[9]  P. Kuchment Quantum graphs: I. Some basic structures , 2004 .

[10]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[11]  Edwin R. Hancock,et al.  Graph Characterization Using Gaussian Wave Packet Signature , 2013, SIMBAD.

[12]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[13]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[14]  Peter M. A. Sloot,et al.  Categorical and Geographical Separation in Science , 2013, Scientific Reports.

[15]  Krzysztof Suchecki,et al.  Multiple propagation paths enhance locating the source of diffusion in complex networks , 2019, ArXiv.

[16]  Martí Cuquet,et al.  Entanglement percolation in quantum complex networks. , 2009, Physical review letters.

[17]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[18]  Gabriele Steidl,et al.  A new constrained optimization model for solving the nonsymmetric stochastic inverse eigenvalue problem , 2020, Linear and Multilinear Algebra.

[19]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[20]  Agata Fronczak,et al.  A Veritable Zoology of Successive Phase Transitions in the Asymmetric q-Voter Model on Multiplex Networks , 2020, Entropy.

[21]  Linus Pauling,et al.  The Diamagnetic Anisotropy of Aromatic Molecules , 1936 .

[22]  P. Kuchment,et al.  Introduction to Quantum Graphs , 2012 .

[23]  C. Cattaneo The spectrum of the continuous Laplacian on a graph , 1997 .

[24]  Yu Qian,et al.  Pattern formation in oscillatory complex networks consisting of excitable nodes. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Vincent Gripon,et al.  Reconstructing a graph from path traces , 2013, 2013 IEEE International Symposium on Information Theory.

[26]  Edwin R. Hancock,et al.  A wave packet signature for complex networks , 2018, J. Complex Networks.

[27]  Pavel Exner,et al.  Spectral Analysis of Schrödinger Operators with Unusual Semiclassical Behavior , 2013 .

[28]  David Krackhardt,et al.  Cognitive social structures , 1987 .

[29]  Isaac Z. Pesenson,et al.  Analysis of band-limited functions on quantum graphs , 2006 .

[30]  Boleslaw K. Szymanski,et al.  Optimizing sensors placement in complex networks for localization of hidden signal source: A review , 2020, Future Gener. Comput. Syst..

[31]  Ville Bergholm,et al.  Community Detection in Quantum Complex Networks , 2013, 1310.6638.

[32]  Yu Qian,et al.  Oscillation sources and wave propagation paths in complex networks consisting of excitable nodes , 2011 .

[33]  Yung Yi,et al.  Iterative learning of graph connectivity from partially-observed cascade samples , 2020, MobiHoc.

[34]  Andrey Y. Lokhov,et al.  Scalable Learning of Independent Cascade Dynamics from Partial Observations , 2020, ArXiv.

[35]  Mason A. Porter,et al.  Author Correction: The physics of spreading processes in multilayer networks , 2016, 1604.02021.

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  Norman E. Hurt,et al.  Mathematical Physics of Quantum Wires and Devices: From Spectral Resonances to Anderson Localization , 2000 .

[38]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[39]  Manlio De Domenico,et al.  Complex networks from classical to quantum , 2017, Communications Physics.

[40]  Yamir Moreno,et al.  Dimensionality reduction and spectral properties of multiplex networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Massimo Franceschetti,et al.  Wave Theory of Information , 2017 .

[42]  Andrey Y. Lokhov,et al.  Reconstructing Parameters of Spreading Models from Partial Observations , 2016, NIPS.

[43]  Robert Paluch,et al.  Fast and accurate detection of spread source in large complex networks , 2018, Scientific Reports.

[44]  Robert Schrader,et al.  Finite propagation speed for solutions of the wave equation on metric graphs , 2011, 1106.0817.

[45]  Hans C. van Houwelingen,et al.  The Elements of Statistical Learning, Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani and Jerome Friedman, Springer, New York, 2001. No. of pages: xvi+533. ISBN 0‐387‐95284‐5 , 2004 .

[46]  Francisco Aparecido Rodrigues,et al.  Multilayer networks: metrics and spectral properties , 2015, ArXiv.

[47]  Oleh Hul,et al.  Are scattering properties of graphs uniquely connected to their shapes? , 2012, Physical review letters.

[48]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[49]  U. Smilansky,et al.  Delay-time distribution in the scattering of time-narrow wave packets (II)—quantum graphs , 2017, 1709.08845.

[50]  Alessandro Ingrosso,et al.  Network reconstruction from infection cascades , 2016, Journal of the Royal Society Interface.

[51]  Yamir Moreno,et al.  Fundamentals of spreading processes in single and multilayer complex networks , 2018, Physics Reports.

[52]  Michael Robinson,et al.  Inverse problems in geometric graphs using internal measurements , 2010, 1008.2933.

[53]  P. Kuchment Graph models for waves in thin structures , 2002 .

[54]  Pavel Exner,et al.  Quantum networks modelled by graphs , 2007, 0706.0481.

[55]  On Hypothesis about the Second Eigenvalue of the Leontief Matrix , 1998 .

[56]  Carolyn S. Gordon,et al.  Isospectral and Isoscattering Manifolds: A Survey of Techniques and Examples , 2004 .

[57]  Xiao-Qing Jin,et al.  A Geometric Nonlinear Conjugate Gradient Method for Stochastic Inverse Eigenvalue Problems , 2016, SIAM J. Numer. Anal..

[58]  A. Arenas,et al.  Mathematical Formulation of Multilayer Networks , 2013, 1307.4977.

[59]  Lucas Lacasa,et al.  Multiplex Decomposition of Non-Markovian Dynamics and the Hidden Layer Reconstruction Problem , 2017, Physical Review X.

[60]  Andrew Watson,et al.  Loughborough University Institutional Repository Homogeneous trees of second order Sturm-Liouville equations : a general theory and program , 2018 .

[61]  Joel Friedman,et al.  Calculus on Graphs , 2004, ArXiv.

[62]  Peter Kuchment Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs , 2005 .

[63]  Jure Leskovec,et al.  Inferring networks of diffusion and influence , 2010, KDD.

[64]  J. Friedman,et al.  Wave equations for graphs and the edge-based Laplacian , 2004 .

[65]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[66]  Edwin R. Hancock,et al.  Analysis of Wave Packet Signature of a Graph , 2013, CAIP.

[67]  U. Smilansky,et al.  Scattering from isospectral quantum graphs , 2010, 1007.0222.

[68]  Sergio Gómez,et al.  Spectral properties of the Laplacian of multiplex networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[70]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[71]  Conrado J. Pérez Vicente,et al.  Diffusion dynamics on multiplex networks , 2012, Physical review letters.

[72]  U. Smilansky,et al.  Note on the role of symmetry in scattering from isospectral graphs and drums , 2011, 1110.2475.

[73]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[74]  Robert Orsi Numerical Methods for Solving Inverse Eigenvalue Problems for Nonnegative Matrices , 2006, SIAM J. Matrix Anal. Appl..

[75]  Hans J. Herrmann,et al.  Shock waves on complex networks , 2014, Scientific Reports.

[76]  Mark E. J. Newman A measure of betweenness centrality based on random walks , 2005, Soc. Networks.

[77]  Peter Kuchment,et al.  Homogeneous trees of second order Sturm-Liouville equations: A general theory and program , 2008, 0802.3442.

[78]  G. Golub,et al.  Inverse Eigenvalue Problems: Theory, Algorithms, and Applications , 2005 .

[79]  G. Arfken Mathematical Methods for Physicists , 1967 .

[80]  Edwin R. Hancock,et al.  Eigenfunctions of the Edge-Based Laplacian on a Graph , 2013, ArXiv.

[81]  L. Verhoeven,et al.  Can one Hear the Shape of a Drum? , 2015 .

[82]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[83]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[84]  Jan Choloniewski,et al.  Key courses of academic curriculum uncovered by data mining of students' grades , 2016, 1604.07074.

[85]  Alessandro Panconesi,et al.  Trace complexity of network inference , 2013, KDD.

[86]  Isaac Z. Pesenson,et al.  Band limited functions on quantum graphs , 2005 .

[87]  Yamir Moreno,et al.  Multilayer Networks in a Nutshell , 2018, Annual Review of Condensed Matter Physics.

[88]  P. Kuchment Quantum graphs , 2004 .

[89]  Robert Paluch,et al.  Impact of interactions between layers on source localization in multilayer networks , 2021 .

[90]  Sabre Kais,et al.  Degree distribution in quantum walks on complex networks , 2013, 1305.6078.

[91]  Pan Du,et al.  Bioinformatics Original Paper Improved Peak Detection in Mass Spectrum by Incorporating Continuous Wavelet Transform-based Pattern Matching , 2022 .

[92]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[93]  W. Marsden I and J , 2012 .

[94]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.