Large Networks and Graph Limits

Recently, it became apparent that a large number of the most interesting structures and phenomena of the world can be described by networks. To develop a mathematical theory of very large networks is an important challenge. This book describes one recent approach to this theory, the limit theory of graphs, which has emerged over the last decade. The theory has rich connections with other approaches to the study of large networks, such as "property testing" in computer science and regularity partition in graph theory. It has several applications in extremal graph theory, including the exact formulations and partial answers to very general questions, such as which problems in extremal graph theory are decidable. It also has less obvious connections with other parts of mathematics (classical and non-classical, like probability theory, measure theory, tensor algebras, and semidefinite optimization). This book explains many of these connections, first at an informal level to emphasize the need to apply more advanced mathematical methods, and then gives an exact development of the theory of the algebraic theory of graph homomorphisms and of the analytic theory of graph limits. This is an amazing book: readable, deep, and lively. It sets out this emerging area, makes connections between old classical graph theory and graph limits, and charts the course of the future. --Persi Diaconis, Stanford University This book is a comprehensive study of the active topic of graph limits and an updated account of its present status. It is a beautiful volume written by an outstanding mathematician who is also a great expositor. --Noga Alon, Tel Aviv University, Israel Modern combinatorics is by no means an isolated subject in mathematics, but has many rich and interesting connections to almost every area of mathematics and computer science. The research presented in Lovasz's book exemplifies this phenomenon. This book presents a wonderful opportunity for a student in combinatorics to explore other fields of mathematics, or conversely for experts in other areas of mathematics to become acquainted with some aspects of graph theory. --Terence Tao, University of California, Los Angeles, CA Laszlo Lovasz has written an admirable treatise on the exciting new theory of graph limits and graph homomorphisms, an area of great importance in the study of large networks. It is an authoritative, masterful text that reflects Lovasz's position as the main architect of this rapidly developing theory. The book is a must for combinatorialists, network theorists, and theoretical computer scientists alike. --Bela Bollobas, Cambridge University, UK

[1]  Dana Ron,et al.  Property Testing in Bounded Degree Graphs , 1997, STOC.

[2]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[3]  Luca Trevisan,et al.  Three Theorems regarding Testing Graph Properties , 2001, Electron. Colloquium Comput. Complex..

[4]  Dana Ron,et al.  A Sublinear Bipartiteness Tester for Bounded Degree Graphs , 1998, STOC '98.

[5]  László Lovász,et al.  Waiting for a Bat to Fly By (in Polynomial Time) , 2006, Comb. Probab. Comput..

[6]  David Gamarnik,et al.  Combinatorial approach to the interpolation method and scaling limits in sparse random graphs , 2010, STOC '10.

[7]  Alan D. Sokal,et al.  On Dependency Graphs and the Lattice Gas , 2006, Combinatorics, Probability and Computing.

[8]  Andrew Thomason,et al.  On testing the 'pseudo-randomness' of a hypergraph , 1992, Discret. Math..

[9]  Anatoly M. Vershik,et al.  Random Metric Spaces and Universality , 2004, math/0402263.

[10]  L'aszl'o Lov'asz Subgraph densities in signed graphons and the local Sidorenko conjecture , 2010 .

[11]  D. J. A. Welsha,et al.  The Potts model and the Tutte polynomial , 2000 .

[12]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[13]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[14]  Fedor Petrov,et al.  Uncountable graphs and invariant measures on the set of universal countable graphs , 2010 .

[15]  J. Lasserre A Sum of Squares Approximation of Nonnegative Polynomials , 2004, SIAM Journal on Optimization.

[16]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[17]  László Lovász,et al.  Random graphons and a weak Positivstellensatz for graphs , 2009, J. Graph Theory.

[18]  N Lusin Lecons sur les ensembles analytiques , 1930 .

[19]  Nathan Linial,et al.  A counterexample to a conjecture of Björner and Lovász on the chi-coloring complex , 2004, J. Comb. Theory, Ser. B.

[20]  V. Rödl,et al.  The counting lemma for regular k-uniform hypergraphs , 2006 .

[21]  Vladimir Nikiforov,et al.  The number of cliques in graphs of given order and size , 2007, 0710.2305.

[22]  Ki Hang Kim,et al.  On a problem of Turán , 1983 .

[23]  R. L. Dobrushin,et al.  Estimates of semiinvariants for the Ising model at low temperatures , 1996 .

[24]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[25]  A. Sidorenko,et al.  Inequalities for functionals generated by bipartite graphs , 1991 .

[26]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[27]  A. Schrijver Tensor subalgebras and First Fundamental Theorems in invariant theory , 2006, math/0604240.

[28]  O. Kallenberg Probabilistic Symmetries and Invariance Principles , 2005 .

[29]  Kazufumi KIMOTO Laplacians and spectral zeta functions of totally ordered categories , 2007 .

[30]  C. Smith,et al.  An Inequality Arising in Genetical Theory , 1959 .

[31]  Yoshiharu Kohayakawa,et al.  Weak hypergraph regularity and linear hypergraphs , 2010, J. Comb. Theory, Ser. B.

[32]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[33]  Gábor Elek On the limit of large girth graph sequences , 2010, Comb..

[34]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[35]  Sourav Chatterjee,et al.  The large deviation principle for the Erdős-Rényi random graph , 2011, Eur. J. Comb..

[36]  Vojtech Rödl,et al.  Regular Partitions of Hypergraphs: Regularity Lemmas , 2007, Combinatorics, Probability and Computing.

[37]  Alexander Sidorenko,et al.  A correlation inequality for bipartite graphs , 1993, Graphs Comb..

[38]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[39]  A. Goodman On Sets of Acquaintances and Strangers at any Party , 1959 .

[40]  Gyula O. H. Katona,et al.  Continuous versions of some extremal hypergraph problems. II , 1980 .

[41]  B. Bollobás,et al.  Metrics for sparse graphs , 2007, 0708.1919.

[42]  Béla Bollobás,et al.  The Cut Metric, Random Graphs, and Branching Processes , 2009, 0901.2091.

[43]  Noga Alon,et al.  Random sampling and approximation of MAX-CSPs , 2003, J. Comput. Syst. Sci..

[44]  Richard H. Schelp,et al.  A Remark on the Number of Complete and Empty Subgraphs , 1998, Comb. Probab. Comput..

[45]  Vadim A. Kaimanovich,et al.  Amenability, hyperfiniteness, and isoperimetric inequalities , 1997 .

[46]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[47]  Raghu Ramakrishnan,et al.  Containment of conjunctive queries: beyond relations as sets , 1995, TODS.

[48]  Edward Witten,et al.  Topological quantum field theory , 1988 .

[49]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[50]  Viktor Harangi,et al.  On the density of triangles and squares in regular finite and unimodular random graphs , 2011, Comb..

[51]  V. Sós,et al.  Counting Graph Homomorphisms , 2006 .

[52]  János Komlós,et al.  Almost tight bounds forɛ-Nets , 1992, Discret. Comput. Geom..

[53]  Oded Goldreich,et al.  Property Testing - Current Research and Surveys , 2010, Property Testing.

[54]  Noga Alon,et al.  Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.

[55]  Noga Alon,et al.  What is the furthest graph from a hereditary property , 2008 .

[56]  D. Freedman,et al.  On the statistics of vision: The Julesz conjecture☆ , 1981 .

[57]  László Lovász,et al.  Finitely forcible graphons , 2009, J. Comb. Theory, Ser. B.

[58]  E. Fischer THE ART OF UNINFORMED DECISIONS: A PRIMER TO PROPERTY TESTING , 2004 .

[59]  Scot Adams,et al.  Trees and amenable equivalence relations , 1990, Ergodic Theory and Dynamical Systems.

[60]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[61]  A. Thomason Pseudo-Random Graphs , 1987 .

[62]  László Lovász,et al.  On the cancellation law among finite relational structures , 1971 .

[63]  Christian Berg,et al.  Positive definite functions on Abelian semigroups , 1976 .

[64]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[65]  V. Rödl,et al.  Extremal problems on set systems , 2002 .

[66]  R. Solé Linked: The New Science of Networks.ByAlbert‐László Barabási.Cambridge (Massachusetts): Perseus Publishing.$26.00. vii + 280 p; ill.; index. ISBN: 0–7382–0667–9. 2002. , 2003 .

[67]  C. Borgs,et al.  Moments of Two-Variable Functions and the Uniqueness of Graph Limits , 2008, 0803.1244.

[68]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[69]  Alexander Schrijver,et al.  Characterizing partition functions of the vertex model , 2011, 1102.4985.

[70]  Yoshiharu Kohayakawa,et al.  Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .

[71]  V. Sós,et al.  GRAPH LIMITS AND EXCHANGEABLE RANDOM GRAPHS , 2008 .

[72]  Vojtech Rödl,et al.  Ramsey problem on multiplicities of complete subgraphs in nearly quasirandom graphs , 1992, Graphs Comb..

[73]  Krzysztof Onak,et al.  Constant-Time Approximation Algorithms via Local Improvements , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[74]  J. Matousek,et al.  Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .

[75]  Svante Janson,et al.  Threshold Graph Limits and Random Threshold Graphs , 2008, Internet Math..

[76]  L. Lovasz,et al.  Reflection positivity, rank connectivity, and homomorphism of graphs , 2004, math/0404468.

[77]  Gabor Lippner,et al.  Borel oracles. An analytical approach to constant-time algorithms , 2009, 0907.1805.

[78]  M. Simonovits Extremal Graph Problems , Degenerate Extremal Problems , and Supersaturated Graphs , 2010 .

[79]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[80]  Alexander Schrijver Graph Invariants in the Edge Model , 2008 .

[81]  Miklós Laczkovich,et al.  Closed sets without measurable matching , 1988 .

[82]  R. Ahlswede,et al.  Graphs with maximal number of adjacent pairs of edges , 1978 .

[83]  Paola Campadelli,et al.  An Upper Bound for the Maximum Cut Mean Value , 1997, WG.

[84]  Paul Erdös,et al.  On random graphs, I , 1959 .

[85]  Miklós Simonovits,et al.  Hereditary Extended Properties, Quasi-Random Graphs and Induced Subgraphs , 2003, Combinatorics, Probability and Computing.

[86]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[87]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[88]  Jaroslav Nesetril,et al.  How many F's are there in G? , 2011, Eur. J. Comb..

[89]  L. Lovász Operations with structures , 1967 .

[90]  Tim Austin On exchangeable random variables and the statistics of large graphs and hypergraphs , 2008, 0801.1698.

[91]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[92]  Joshua N. Cooper A Permutation Regularity Lemma , 2006, Electron. J. Comb..

[93]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[94]  Benjamin Rossman,et al.  The homomorphism domination exponent , 2010, Eur. J. Comb..

[95]  László Lovász,et al.  Global information from local observation , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[96]  László Lovász,et al.  Very large graphs , 2009, 0902.0132.

[97]  J. N. Joshua,et al.  Quasirandom permutations , 2002, J. Comb. Theory A.

[98]  Hamed Hatami Graph norms and Sidorenko’s conjecture , 2008, 0806.0047.

[99]  David C. Fisher Lower bounds on the number of triangles in a graph , 1989, J. Graph Theory.

[100]  B. Szegedy,et al.  Contractors and connectors of graph algebras , 2009 .

[101]  A. Vershik,et al.  Classification of Measurable Functions of Several Variables and Invariantly Distributed Random Matrices , 2002 .

[102]  Miklós Simonovits,et al.  Hereditarily extended properties, quasi-random graphs and not necessarily induced subgraphs , 1997, Comb..

[103]  Bryna Kra,et al.  The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view , 2005 .

[104]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[105]  G. R. Blakley,et al.  A Hölder type inequality for symmetric matrices with nonnegative entries , 1965 .

[106]  David London Inequalities in quadratic forms , 1966 .

[107]  O. Schramm Hyperfinite graph limits , 2007, 0711.3808.

[108]  Joachim Kock Frobenius Algebras and 2D Topological Quantum Field Theories: Frobenius algebras , 2003 .

[109]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[110]  Ronitt Rubinfeld,et al.  Robust Chara terizations of Polynomials withAppli ations to Program Testing , 1996 .

[111]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[112]  Alexander Schrijver,et al.  Dual graph homomorphism functions , 2010, J. Comb. Theory, Ser. A.

[113]  Andrew Thomason,et al.  Pseudo-random hypergraphs , 1989, Discret. Math..

[114]  Dmitry N. Kozlov,et al.  Topological obstructions to graph colorings , 2003 .

[115]  D. Conlon,et al.  An Approximate Version of Sidorenko’s Conjecture , 2010, 1004.4236.

[116]  E. Hewitt,et al.  On the fundamental ideas of measure theory , 1962 .

[117]  Alexander A. Razborov,et al.  On the Minimal Density of Triangles in Graphs , 2008, Combinatorics, Probability and Computing.

[118]  R. Pastor-Satorras,et al.  Class of correlated random networks with hidden variables. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[119]  Alexander A. Razborov,et al.  On 3-Hypergraphs with Forbidden 4-Vertex Configurations , 2010, SIAM J. Discret. Math..

[120]  Gábor Elek Note on limits of finite graphs , 2007, Comb..

[121]  Béla Bollobás,et al.  A Tutte Polynomial for Coloured Graphs , 1999, Combinatorics, Probability and Computing.

[122]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[123]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[124]  Béla Bollobás,et al.  An Abstract Szemerédi Regularity Lemma , 2008 .

[125]  B. Szegedy Edge coloring models and reflection positivity , 2005, math/0505035.

[126]  Charles Radin,et al.  Emergent Structures in Large Networks , 2013, J. Appl. Probab..

[127]  Balázs Ráth,et al.  Multigraph limits and exchangeability , 2009, 0910.0547.

[128]  Alexander Sidorenko Randomness friendly graphs , 1996, Random Struct. Algorithms.

[129]  Russell Lyons Asymptotic Enumeration of Spanning Trees , 2005, Comb. Probab. Comput..

[130]  Jan Hladký,et al.  Counting flags in triangle-free digraphs , 2009, Electron. Notes Discret. Math..

[131]  Jan Hladký Structural properties of graphs---probabilistic and deterministic point of view , 2006 .

[132]  László Lovász,et al.  Limits of randomly grown graph sequences , 2009, Eur. J. Comb..

[133]  J. Isbell,et al.  Some inequalities in hom sets , 1991 .

[134]  Yoshiharu Kohayakawa,et al.  Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.

[135]  G. Elek Parameter testing in bounded degree graphs of subexponential growth , 2010 .

[136]  Noga Alon,et al.  A combinatorial characterization of the testable graph properties: it's all about regularity , 2006, STOC '06.

[137]  P. Erdös On the structure of linear graphs , 1946 .

[138]  Vojtech Rödl,et al.  The algorithmic aspects of the regularity lemma , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[139]  Guus Regts The rank of edge connection matrices and the dimension of algebras of invariant tensors , 2012, Eur. J. Comb..

[140]  B. Lindström Determinants on semilattices , 1969 .

[141]  Peter Winkler,et al.  Graph Homomorphisms and Long Range Action , 2001, Graphs, Morphisms and Statistical Physics.

[142]  Svante Janson,et al.  Poset limits and exchangeable random posets , 2009, Comb..

[143]  Oded Schramm,et al.  Every minor-closed property of sparse graphs is testable , 2008, Electron. Colloquium Comput. Complex..

[144]  B. Szegedy,et al.  Regularity Partitions and The Topology of Graphons , 2010, 1002.4377.

[145]  O. Cohen Recurrence of Distributional Limits of Finite Planar Graphs , 2000 .

[146]  A F Sidorenko EXTREMAL ESTIMATES OF PROBABILITY MEASURES AND THEIR COMBINATORIAL NATURE , 1983 .

[147]  Stefanie Gerke,et al.  The sparse regularity lemma and its applications , 2005, BCC.

[148]  W. G. BROWN ON MULTIGRAPH EXTREMAL PROBLEMS , 2004 .

[149]  Fedor Nazarov,et al.  Perfect matchings as IID factors on non-amenable groups , 2009, Eur. J. Comb..

[150]  de Ng Dick Bruijn,et al.  Algebraic theory of Penrose's non-periodic tilings of the plane. II , 1981 .

[151]  D. Gamarnik,et al.  Counting without sampling: Asymptotics of the log-partition function for certain statistical physics models , 2008 .

[152]  M. Simonovits,et al.  On the number of complete subgraphs of a graph II , 1983 .

[153]  David Aldous,et al.  Tree-valued Markov chains and Poisson-Galton-Watson distributions , 1997, Microsurveys in Discrete Probability.

[154]  László Lovász,et al.  Multifractal network generator , 2010, Proceedings of the National Academy of Sciences.

[155]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[156]  B. Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[157]  Miklós Simonovits,et al.  Extremal problems for directed graphs , 1973 .

[158]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[159]  Terence Tao,et al.  The dichotomy between structure and randomness, arithmetic progressions, and the primes , 2005, math/0512114.

[160]  L. Lovász Combinatorial problems and exercises , 1979 .

[161]  Barry Simon,et al.  The statistical mechanics of lattice gases , 1993 .

[162]  Andrzej Grzesik On the maximum number of five-cycles in a triangle-free graph , 2012, J. Comb. Theory, Ser. B.

[163]  Ralph McKenzie,et al.  Cardinal multiplication of structures with a reflexive relation , 1971 .

[164]  Béla Bollobás,et al.  Random Graphs and Branching Processes , 2008 .

[165]  László Lovász,et al.  The rank of connection matrices and the dimension of graph algebras , 2004, Eur. J. Comb..

[166]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[167]  Terence Tao Szemerédi's regularity lemma revisited , 2006, Contributions Discret. Math..

[168]  Swastik Kopparty Local Structure : Subgraph Counts II , 2011 .

[169]  H. Kellerer Duality theorems for marginal problems , 1984 .

[170]  H. Wilf Hadamard determinants Möbius functions, and the chromatic number of a graph , 1968 .

[171]  Hamed Hatami,et al.  Undecidability of linear inequalities in graph homomorphism densities , 2010, 1005.2382.

[172]  Johann A. Makowsky,et al.  Connection Matrices for MSOL-Definable Structural Invariants , 2009, ICLA.

[173]  Christian Borgs,et al.  Absence of Zeros for the Chromatic Polynomial on Bounded Degree Graphs , 2006, Combinatorics, Probability and Computing.

[174]  G'abor Elek,et al.  A measure-theoretic approach to the theory of dense hypergraphs , 2008, 0810.4062.

[175]  Paul Erdös ON SOME PROBLEMS IN GRAPH THEORY , COMBINATORIAL ANALYSIS AND COMBINATORIAL NUMBER THEORY , 2004 .

[176]  Alexander S. Kechris,et al.  Topics in orbit equivalence , 2004 .

[177]  Alexander Schrijver,et al.  Semidefinite Functions on Categories , 2009, Electron. J. Comb..

[178]  Boris Pittel On a random graph evolving by degrees , 2010 .

[179]  Marek Karpinski,et al.  Polynomial Time Approximation Schemes for Dense Instances of NP-Hard Problems , 1999, J. Comput. Syst. Sci..

[180]  H. Whitney The Coloring of Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[181]  Lewis Bowen,et al.  Couplings of uniform spanning forests , 2004 .

[182]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[183]  Gyula O. H. Katona Probabilistic Inequalities from Extremal Graph Results (A Survey) , 1985 .

[184]  Terence Tao,et al.  Testability and repair of hereditary hypergraph properties , 2008, Random Struct. Algorithms.

[185]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[186]  Alex D. Scott,et al.  Szemerédi's Regularity Lemma for Matrices and Sparse Graphs , 2010, Combinatorics, Probability and Computing.

[187]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[188]  V. Sós,et al.  Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics , 2012 .

[189]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[190]  G. Elek The combinatorial cost , 2006, math/0608474.

[191]  Krzysztof Onak,et al.  Local Graph Partitions for Approximation and Testing , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[192]  Jacob Fox,et al.  A new proof of the graph removal lemma , 2010, ArXiv.

[193]  Oleg Pikhurko,et al.  An analytic approach to stability , 2008, Discret. Math..

[194]  Balázs Ráth,et al.  Multigraph limit of the dense configuration model and the preferential attachment graph , 2011, 1106.2058.

[195]  Béla Bollobás,et al.  Monotone Graph Limits and Quasimonotone Graphs , 2011, Internet Math..

[196]  B. Szegedy,et al.  Testing properties of graphs and functions , 2008, 0803.1248.

[197]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[198]  Vojtech Rödl,et al.  Regular Partitions of Hypergraphs: Counting Lemmas , 2007, Combinatorics, Probability and Computing.

[199]  M. Laczkovich Equidecomposability and discrepancy; a solution of Tarski's circle-squaring problem , 1990 .

[200]  Balázs Szegedy Edge Coloring Models as Singular Vertex Coloring Models , 2010 .

[201]  J. Moon On the Number of Complete Subgraphs of a Graph , 1965, Canadian Mathematical Bulletin.

[202]  Svante Janson,et al.  Limits of interval orders and semiorders , 2011, 1104.1264.

[203]  C. Borgs,et al.  Percolation on dense graph sequences. , 2007, math/0701346.

[204]  Noga Alon,et al.  Can a Graph Have Distinct Regular Partitions? , 2009, SIAM J. Discret. Math..

[205]  P. Erdös ON SEQUENCES OF INTEGERS NO ONE OF WHICH DIVIDES THE PRODUCT OF TWO OTHERS AND ON SOME RELATED PROBLEMS , 2004 .

[206]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[207]  Alexander Schrijver,et al.  Graph invariants in the spin model , 2009, J. Comb. Theory, Ser. B.

[208]  Jaroslav Nesetril,et al.  Graph homomorphisms, the Tutte polynomial and "q-state Potts uniqueness" , 2009, Electron. Notes Discret. Math..

[209]  Vojtech Rödl,et al.  The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..

[210]  Noga Alon,et al.  A characterization of the (natural) graph properties testable with one-sided error , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).