Disjoint Edges in Topological Graphs
暂无分享,去创建一个
János Pach | Géza Tóth | J. Pach | G. Tóth
[1] János Pach,et al. A generalization of quasi-planarity , 2004 .
[2] Géza Tóth,et al. Note on Geometric Graphs , 2000, J. Comb. Theory, Ser. A.
[3] János Pach,et al. Unavoidable Configurations in Complete Topological Graphs , 2000, GD.
[4] János Pach,et al. Some geometric applications of Dilworth’s theorem , 1994, Discret. Comput. Geom..
[5] Ch. Chojnacki,et al. Über wesentlich unplättbare Kurven im dreidimensionalen Raume , 1934 .
[6] Jirí Matousek,et al. Crossing number, pair-crossing number, and expansion , 2004, J. Comb. Theory, Ser. B.
[7] Pavel Valtr,et al. On Geometric Graphs with No k Pairwise Parallel Edges , 1997, Discret. Comput. Geom..
[8] János Pach,et al. Some geometric applications of Dilworth's theorem , 1993, SCG '93.
[9] J. Pach. Towards a Theory of Geometric Graphs , 2004 .
[10] Micha Sharir,et al. Quasi-Planar Graphs Have a Linear Number of Edges , 1995, Graph Drawing.
[11] Farhad Shahrokhi,et al. Applications of the crossing number , 1994, SCG '94.
[12] Micha Sharir,et al. Quasi-planar graphs have a linear number of edges , 1995, GD.
[13] János Pach. Geometric Graph Theory , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[14] Frank Thomson Leighton,et al. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.
[15] J. Pach. Surveys in Combinatorics, 1999: Geometric Graph Theory , 1999 .
[16] Jj Anos Pach. Which Crossing Number Is It Anyway? , 1998 .
[17] Noga Alon,et al. Disjoint edges in geometric graphs , 1989, Discret. Comput. Geom..
[18] János Pach,et al. Relaxing Planarity for Topological Graphs , 2002, JCDCG.
[19] Prabhakar Raghavan,et al. Randomized rounding: A technique for provably good algorithms and algorithmic proofs , 1985, Comb..