Disjoint Edges in Topological Graphs

A topological graph G is a graph drawn in the plane so that its edges are represented by Jordan arcs. G is called simple, if any two edges have at most one point in common. It is shown that the maximum number of edges of a simple topological graph with n vertices and no k pairwise disjoint edges is O(nlog4k−8n) edges. The assumption that G is simple cannot be dropped: for every n, there exists a complete topological graph of n vertices, whose any two edges cross at most twice.

[1]  János Pach,et al.  A generalization of quasi-planarity , 2004 .

[2]  Géza Tóth,et al.  Note on Geometric Graphs , 2000, J. Comb. Theory, Ser. A.

[3]  János Pach,et al.  Unavoidable Configurations in Complete Topological Graphs , 2000, GD.

[4]  János Pach,et al.  Some geometric applications of Dilworth’s theorem , 1994, Discret. Comput. Geom..

[5]  Ch. Chojnacki,et al.  Über wesentlich unplättbare Kurven im dreidimensionalen Raume , 1934 .

[6]  Jirí Matousek,et al.  Crossing number, pair-crossing number, and expansion , 2004, J. Comb. Theory, Ser. B.

[7]  Pavel Valtr,et al.  On Geometric Graphs with No k Pairwise Parallel Edges , 1997, Discret. Comput. Geom..

[8]  János Pach,et al.  Some geometric applications of Dilworth's theorem , 1993, SCG '93.

[9]  J. Pach Towards a Theory of Geometric Graphs , 2004 .

[10]  Micha Sharir,et al.  Quasi-Planar Graphs Have a Linear Number of Edges , 1995, Graph Drawing.

[11]  Farhad Shahrokhi,et al.  Applications of the crossing number , 1994, SCG '94.

[12]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.

[13]  János Pach Geometric Graph Theory , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[14]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[15]  J. Pach Surveys in Combinatorics, 1999: Geometric Graph Theory , 1999 .

[16]  Jj Anos Pach Which Crossing Number Is It Anyway? , 1998 .

[17]  Noga Alon,et al.  Disjoint edges in geometric graphs , 1989, Discret. Comput. Geom..

[18]  János Pach,et al.  Relaxing Planarity for Topological Graphs , 2002, JCDCG.

[19]  Prabhakar Raghavan,et al.  Randomized rounding: A technique for provably good algorithms and algorithmic proofs , 1985, Comb..