PhD Thesis On-line Conservative Learning

I n this thesis we are concerned with classifier-based object detection. Therefore, a previously learned classifier is iteratively applied on all possible positions in a given image. When learning an object representation one faces two main problems. First, a representative set of training samples is required, which is usually obtained by hand labeling. Since for complex object classes this set may be quite large, this is not convenient. Second, due to the high variability of an object’s appearance and varying environmental conditions general object representations often fail in practice (low recall, low precision). Hence, it would be beneficial to have an adaptive system. But such systems have to learn from unknown, unlabeled samples. Thus, in this thesis we propose a method for visual learning, that addresses both problems. In fact, Conservative Learning minimizes the manual (labeling) effort when on-line learning an adaptive classifier. This is realized by combining the power of a discriminative model and the robustness of a generative model. The main idea is to verify the detection results of the discriminative model by the generative model and to classify those patches either as true positive or as false positive. Since we have a huge amount of data (i.e., a video stream) we can use very conservative parameters for this decision. Hence, most samples are not considered at all. The thus labeled samples are fed back to the system and we get an increasingly better detector. To get the whole process started we acquire training samples from low level cues such as background subtraction, motion detection, or tracking. These cues can also be applied to acquire additional positive samples. Experimental evaluations demonstrate the benefits of the approach. In fact, we analyze the learning behaviour and show that an increasingly better detector is obtained over time. Additionally, the approach is demonstrated for various different applications including detecting persons, faces, and hand held objects. For the person detection task, that is analyzed more detailed, we show that our approach outperforms state-of-the-art methods, that require a time-consuming off-line training.

[1]  Dariu Gavrila,et al.  Multi-feature hierarchical template matching using distance transforms , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[2]  Quming Zhou,et al.  Tracking and Classifying Moving Objects from Video , 2001 .

[3]  Yi Li,et al.  A generative/discriminative learning algorithm for image classification , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[4]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[5]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[6]  Stuart J. Russell,et al.  Experimental comparisons of online and batch versions of bagging and boosting , 2001, KDD '01.

[7]  Stuart J. Russell,et al.  Image Segmentation in Video Sequences: A Probabilistic Approach , 1997, UAI.

[8]  James L. Crowley,et al.  Robust face tracking using color , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[9]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[10]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[11]  Horst Bischof,et al.  A Robust PCA Algorithm for Building Representations from Panoramic Images , 2002, ECCV.

[12]  Yair Weiss,et al.  Learning object detection from a small number of examples: the importance of good features , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[14]  Cordelia Schmid,et al.  Comparison of affine-invariant local detectors and descriptors , 2004, 2004 12th European Signal Processing Conference.

[15]  Horst Bischof,et al.  On-line Learning a Person Model from Video Data , 2006 .

[16]  Ramakant Nevatia,et al.  Improving Part based Object Detection by Unsupervised, Online Boosting , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[18]  Pietro Perona,et al.  Combining generative models and Fisher kernels for object recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[19]  B. V. K. Vijaya Kumar,et al.  Efficient Calculation of Primary Images from a Set of Images , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Max Lu,et al.  Robust and efficient foreground analysis for real-time video surveillance , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[21]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[22]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[23]  Adam Baumberg,et al.  Learning deformable models for tracking human motion , 1996 .

[24]  Dao-Qing Dai,et al.  Inverse Fisher discriminate criteria for small sample size problem and its application to face recognition , 2005, Pattern Recognit..

[25]  Marc Pollefeys,et al.  Multiple view geometry , 2005 .

[26]  Danijel Skocaj,et al.  Incremental and robust learning of subspace representations , 2008, Image Vis. Comput..

[27]  B. Schiele,et al.  Fast and Robust Face Finding via Local Context , 2003 .

[28]  A. Leonardis,et al.  Object Detection with Bootstrapped Learning ∗ , 2005 .

[29]  Paul A. Viola,et al.  Unsupervised improvement of visual detectors using cotraining , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[30]  Horst Bischof,et al.  Incremental LDA Learning by Combining Reconstructive and Discriminative Approaches , 2007, BMVC.

[31]  Alan J. Mayne,et al.  Generalized Inverse of Matrices and its Applications , 1972 .

[32]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[33]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[34]  JuttenChristian,et al.  Blind separation of sources, Part 1 , 1991 .

[35]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[36]  C. Eckart,et al.  A principal axis transformation for non-hermitian matrices , 1939 .

[37]  David J. Fleet,et al.  Stochastic Tracking of 3D Human Figures Using 2D Image Motion , 2000, ECCV.

[38]  Stuart J. Russell,et al.  Online bagging and boosting , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[39]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[40]  LittlestoneNick Learning Quickly When Irrelevant Attributes Abound , 1988 .

[41]  Martial Hebert,et al.  Semi-Supervised Self-Training of Object Detection Models , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[42]  Horst Bischof,et al.  Efficient Maximally Stable Extremal Region (MSER) Tracking , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[43]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[44]  Rachid Deriche,et al.  A level set framework using a new incremental, robust Active Shape Model for object segmentation and tracking , 2009, Image Vis. Comput..

[45]  Vladimir Vezhnevets,et al.  A Survey on Pixel-Based Skin Color Detection Techniques , 2003 .

[46]  Alexander H. Waibel,et al.  Skin-Color Modeling and Adaptation , 1998, ACCV.

[47]  Chandrika Kamath,et al.  Robust techniques for background subtraction in urban traffic video , 2004, IS&T/SPIE Electronic Imaging.

[48]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[49]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[50]  Horst Bischof,et al.  Eigenboosting: Combining Discriminative and Generative Information , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Greg Mori,et al.  Detecting Pedestrians by Learning Shapelet Features , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Andrew Zisserman,et al.  A Boundary-Fragment-Model for Object Detection , 2006, ECCV.

[53]  Ming Li,et al.  2D-LDA: A statistical linear discriminant analysis for image matrix , 2005, Pattern Recognit. Lett..

[54]  Udo Zölzer,et al.  Model-free face detection and head tracking with morphological hole mapping , 2005, 2005 13th European Signal Processing Conference.

[55]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[56]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[57]  Ming-Hsuan Yang,et al.  Adaptive Discriminative Generative Model and Its Applications , 2004, NIPS.

[58]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[59]  Paul A. Viola,et al.  Boosting Image Retrieval , 2004, International Journal of Computer Vision.

[60]  Fatih Murat Porikli,et al.  Human Detection via Classification on Riemannian Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[61]  James M. Rehg,et al.  Statistical Color Models with Application to Skin Detection , 2004, International Journal of Computer Vision.

[62]  Cordelia Schmid,et al.  Human Detection Based on a Probabilistic Assembly of Robust Part Detectors , 2004, ECCV.

[63]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[64]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Horst Bischof,et al.  Robust Recognition Using Eigenimages , 2000, Comput. Vis. Image Underst..

[66]  Shai Avidan Ensemble Tracking , 2007, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Ayhan Demiriz,et al.  Linear Programming Boosting via Column Generation , 2002, Machine Learning.

[68]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[69]  H. Grabner,et al.  Autonomous Learning of a Robust Background Model for Change Detection ∗ , 2006 .

[70]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[71]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[72]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[73]  Ralph R. Martin,et al.  Merging and Splitting Eigenspace Models , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Andrew Zisserman,et al.  Person Spotting: Video Shot Retrieval for Face Sets , 2005, CIVR.

[75]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[76]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[77]  Jan J. Gerbrands,et al.  On the relationships between SVD, KLT and PCA , 1981, Pattern Recognit..

[78]  Ilkay Ulusoy,et al.  Generative versus discriminative methods for object recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[79]  Jakob J. Verbeek,et al.  Transformation invariant component analysis for binary images , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[80]  Ishwar K. Sethi,et al.  Confidence-based active learning , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[81]  Y.-D. Kim,et al.  Neural-edge-based vehicle detection and traffic parameter extraction , 2004, Image Vis. Comput..

[82]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[83]  Horst Bischof,et al.  Conservative Visual Learning for Object Detection with Minimal Hand Labeling Effort , 2005, DAGM-Symposium.

[84]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[85]  Rong Yan,et al.  Automatically labeling video data using multi-class active learning , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[86]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[87]  Jian Yang,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[88]  Fatih Murat Porikli,et al.  Integral histogram: a fast way to extract histograms in Cartesian spaces , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[89]  G. W. Israel,et al.  A receptor model using a specific non-negative transformation technique for ambient aerosol , 1989 .

[90]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[91]  Arnold W. M. Smeulders,et al.  Efficient projection pursuit density estimation for background subtraction , 2006 .

[92]  B. S. Manjunath,et al.  An Eigenspace Update Algorithm for Image Analysis , 1997, CVGIP Graph. Model. Image Process..

[93]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[94]  LinLin Shen,et al.  MutualBoost learning for selecting Gabor features for face recognition , 2006, Pattern Recognit. Lett..

[95]  Hannes Kruppa Object detection using scale specific Boosted parts and a Bayesian combiner , 2004 .

[96]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[97]  Juha Karhunen,et al.  Principal component neural networks — Theory and applications , 1998, Pattern Analysis and Applications.

[98]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[99]  Andrew Zisserman,et al.  Object Level Grouping for Video Shots , 2004, International Journal of Computer Vision.

[100]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[101]  Larry S. Davis,et al.  Density Estimation Using Mixtures of Mixtures of Gaussians , 2006, ECCV.

[102]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[103]  P. Roth,et al.  SURVEY OF APPEARANCE-BASED METHODS FOR OBJECT RECOGNITION , 2008 .

[104]  Mubarak Shah,et al.  Online detection and classification of moving objects using progressively improving detectors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[105]  H. Bischof,et al.  Incremental Robust Learning an Active Shape Model , 2006 .

[106]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[107]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[108]  T. List,et al.  Comparison of target detection algorithms using adaptive background models , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[109]  Hui Kong,et al.  Two-dimensional Fisher discriminant analysis: forget about small sample size problem [face recognition applications] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[110]  Bernt Schiele,et al.  Pedestrian detection in crowded scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[111]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[112]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[113]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[114]  Yongmin Li,et al.  On incremental and robust subspace learning , 2004, Pattern Recognit..

[115]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[116]  A. Laub,et al.  The singular value decomposition: Its computation and some applications , 1980 .

[117]  Peter Auer,et al.  Weak Hypotheses and Boosting for Generic Object Detection and Recognition , 2004, ECCV.

[118]  Horst Bischof,et al.  On-line Learning of Unknown Hand Held Objects via Tracking , 2006 .

[119]  G. W. STEWARTt ON THE EARLY HISTORY OF THE SINGULAR VALUE DECOMPOSITION * , 2022 .

[120]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[121]  Fei-Fei Li,et al.  OPTIMOL: Automatic Online Picture Collection via Incremental Model Learning , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[122]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[123]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[124]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[125]  Horst Bischof,et al.  Weighted and robust learning of subspace representations , 2007, Pattern Recognit..

[126]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[127]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[128]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[129]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2005, International Journal of Computer Vision.

[130]  Danijel Skocaj,et al.  Weighted and robust incremental method for subspace learning , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[131]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[132]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[133]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[134]  Gilles Bertrand,et al.  Quasi-Linear Algorithms for the Topological Watershed , 2005, Journal of Mathematical Imaging and Vision.

[135]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1990, COLT '90.

[136]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[137]  Lionel Prevost,et al.  Hybrid generative/discriminative classifier for unconstrained character recognition , 2005, Pattern Recognit. Lett..

[138]  Horst Bischof,et al.  Tracking for Learning an Object Representation from Unlabeled Data , 2006 .

[139]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[140]  Stefan M. Wild,et al.  Motivating non-negative matrix factorizations , 2003 .

[141]  Serge J. Belongie,et al.  Active Learning in Face Recognition: Using Tracking to Build a Face Model , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[142]  Yu Hen Hu,et al.  On-line learning for active pattern recognition , 1996, IEEE Signal Processing Letters.

[143]  Bruce A. Draper,et al.  Recognizing faces with PCA and ICA , 2003, Comput. Vis. Image Underst..

[144]  Daoqiang Zhang,et al.  Non-negative Matrix Factorization on Kernels , 2006, PRICAI.

[145]  Robert E. Schapire,et al.  The Boosting Approach to Machine Learning An Overview , 2003 .

[146]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[147]  Shaogang Gong,et al.  Colour Model Selection and Adaption in Dynamic Scenes , 1998, ECCV.

[148]  Alan L. Yuille,et al.  Robust principal component analysis by self-organizing rules based on statistical physics approach , 1995, IEEE Trans. Neural Networks.

[149]  Jochen Triesch,et al.  Semi-autonomous Learning of Objects , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[150]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[151]  A. Leonardis,et al.  On-line Conservative Learning for Person Detection , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[152]  Horst Bischof,et al.  Appearance models based on kernel canonical correlation analysis , 2003, Pattern Recognit..

[153]  Aapo Hyvärinen,et al.  The Fixed-Point Algorithm and Maximum Likelihood Estimation for Independent Component Analysis , 1999, Neural Processing Letters.

[154]  Horst Bischof,et al.  A novel performance evaluation method of local detectors on non-planar scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[155]  Ales Leonardis,et al.  Context Driven Focus of Attention for Object Detection , 2008, WAPCV.

[156]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[157]  Arthur B. Yeh,et al.  Fundamentals of Probability and Statistics for Engineers , 2005, Technometrics.

[158]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[159]  Rajesh P. N. Rao Dynamic appearance-based recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[160]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[161]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[162]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Other Conferences.

[163]  Sanja Fidler,et al.  Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[164]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[165]  Marko Heikkilä,et al.  A Texture-based Method for Detecting Moving Objects , 2004, BMVC.

[166]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[167]  David C. Hogg,et al.  Learning Flexible Models from Image Sequences , 1994, ECCV.

[168]  Jiri Matas,et al.  A New Class of Learnable Detectors for Categorisation , 2005, SCIA.

[169]  Maria-Florina Balcan,et al.  Co-Training and Expansion: Towards Bridging Theory and Practice , 2004, NIPS.

[170]  Markus Turtinen,et al.  Labeling of Textured Data with Co-training and Active Learning , 2005 .

[171]  Nikolaos G. Bourbakis,et al.  A survey of skin-color modeling and detection methods , 2007, Pattern Recognit..

[172]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[173]  Christoph Schnörr,et al.  Learning non-negative sparse image codes by convex programming , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[174]  Danijel Skočaj,et al.  Robust Subspace Approaches to Visual Learning and recognition , 2003 .

[175]  David J. Kriegman,et al.  Visual tracking and recognition using probabilistic appearance manifolds , 2005, Comput. Vis. Image Underst..

[176]  Vinod Nair,et al.  An unsupervised, online learning framework for moving object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[177]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[178]  H. Grabner,et al.  Is Pedestrian Detection Really a Hard Task ? ∗ , 2007 .

[179]  Dan Roth,et al.  Learning to detect objects in images via a sparse, part-based representation , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[180]  Christian Jutten,et al.  Detection de grandeurs primitives dans un message composite par une architecture de calcul neuromime , 1985 .

[181]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[182]  Ralph R. Martin,et al.  Incremental Eigenanalysis for Classification , 1998, BMVC.

[183]  Dan Roth,et al.  Learning a Sparse Representation for Object Detection , 2002, ECCV.

[184]  Michael J. Black,et al.  Robust Principal Component Analysis for Computer Vision , 2001, ICCV.

[185]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[186]  Horst Bischof,et al.  On-Line, Incremental Learning of a Robust Active Shape Model , 2006, DAGM-Symposium.

[187]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[188]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[189]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[190]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[191]  Lawrence K. Saul,et al.  A Generalized Linear Model for Principal Component Analysis of Binary Data , 2003, AISTATS.