Pseudo-divergence-free element free Galerkin method for incompressible fluid flow

Incompressible modeling in finite elements has been a major concern since its early developments and has been extensively studied. However, incompressibility in mesh-free methods is still an open topic. Thus, instabilities or locking can preclude the use of mesh-free approximations in such problems. Here, a novel mesh-free formulation is proposed for incompressible flow. It is based on defining a pseudo-divergence-free interpolation space. That is, the finite dimensional interpolation space approaches a divergence-free space when the discretization is refined. Note that such an interpolation does not include any overhead in the computations. The numerical evaluations are performed using the inf–sup numerical test and two well-known benchmark examples for Stokes flow.

[1]  J. Tinsley Oden,et al.  Stability of some mixed finite element methods for Stokesian flows , 1984 .

[2]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[3]  René de Borst,et al.  Conditions for locking-free elasto-plastic analyses in the Element-Free Galerkin method , 1999 .

[4]  Michael Griebel,et al.  A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .

[5]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[6]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[7]  Locking in the incompressible limit: pseudo-divergence-free element free Galerkin , 2003 .

[8]  Mark A Fleming,et al.  Smoothing and accelerated computations in the element free Galerkin method , 1996 .

[9]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[10]  Satya N. Atluri,et al.  A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method , 1998 .

[11]  Pedro Díez,et al.  Convergence of finite elements enriched with mesh-less methods , 2003, Numerische Mathematik.

[12]  Hui-Ping Wang,et al.  An improved reproducing kernel particle method for nearly incompressible finite elasticity , 2000 .

[13]  J. Oden,et al.  Finite Element Methods for Flow Problems , 2003 .

[14]  D. Malkus Eigenproblems associated with the discrete LBB condition for incompressible finite elements , 1981 .

[15]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[16]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part IV: Parallelization , 2003 .

[17]  Giancarlo Sangalli,et al.  Inf-sup testing of upwind methods , 2000 .

[18]  Antonio Huerta,et al.  Coupling Finite Elements and Particles for Adaptivity: An Application to Consistently Stabilized Convection-Diffusion , 2003 .

[19]  Pavel B. Bochev,et al.  LEAST SQUARES FINITE ELEMENT METHODS FOR VISCOUS , INCOMPRESSIBLE FLOWS , 2006 .

[20]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[21]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[22]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[23]  R. Temam Navier-Stokes Equations , 1977 .

[24]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[25]  Ted Belytschko,et al.  Volumetric locking in the element free Galerkin method , 1999 .

[26]  A. Huerta,et al.  Enrichissement des interpolations d'?l?ments finis en utilisant des m?thodes sans maillage , 2002 .

[27]  K. Bathe,et al.  The inf-sup test , 1993 .

[28]  L. Quartapelle,et al.  Numerical solution of the incompressible Navier-Stokes equations , 1993, International series of numerical mathematics.

[29]  Roland Becker,et al.  Mesh adaptation for Dirichlet flow control via Nitsche's method , 2002 .

[30]  Antonio Huerta,et al.  Locking in the incompressible limit for the element‐free Galerkin method , 2001 .

[31]  I. Babuska,et al.  Meshless and Generalized Finite Element Methods: A Survey of Some Major Results , 2003 .

[32]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[33]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[34]  E. Wagner International Series of Numerical Mathematics , 1963 .

[35]  Editors , 1986, Brain Research Bulletin.

[36]  Pierre Villon,et al.  Contribution à l'optimisation , 1991 .

[37]  I. I. Bakelʹman,et al.  Geometric Analysis and Nonlinear Partial Differential Equations , 1993 .