Detection and manipulation of phosphoinositides.

[1]  Adam Byron,et al.  Isolation of Integrin‐Based Adhesion Complexes , 2015, Current protocols in cell biology.

[2]  Marco Y. Hein,et al.  A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells , 2014, eLife.

[3]  M. Wakelam The uses and limitations of the analysis of cellular phosphoinositides by lipidomic and imaging methodologies. , 2014, Biochimica et biophysica acta.

[4]  M. Kraft,et al.  Imaging lipids with secondary ion mass spectrometry. , 2014, Biochimica et biophysica acta.

[5]  Hayao Ohno,et al.  Role of synaptic phosphatidylinositol 3-kinase in a behavioral learning response in C. elegans , 2014, Science.

[6]  W. Heo,et al.  Spatiotemporal control of fibroblast growth factor receptor signals by blue light. , 2014, Chemistry & biology.

[7]  T. Langer,et al.  Discovery and pharmacological characterization of a novel small molecule inhibitor of phosphatidylinositol-5-phosphate 4-kinase, type II, beta. , 2014, Biochemical and biophysical research communications.

[8]  Laurens Lindenburg,et al.  Engineering Genetically Encoded FRET Sensors , 2014, Sensors.

[9]  J. Saez-Rodriguez,et al.  A rapidly reversible chemical dimerizer system to study lipid signaling in living cells. , 2014, Angewandte Chemie.

[10]  C. Schultz,et al.  Plasma membrane phosphoinositide balance regulates cell shape during Drosophila embryo morphogenesis , 2014, The Journal of cell biology.

[11]  P. De Camilli,et al.  Identification of Inhibitors of Inositol 5-Phosphatases through Multiple Screening Strategies , 2014, ACS chemical biology.

[12]  G. Salles,et al.  PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. , 2014, The New England journal of medicine.

[13]  C. Rommel,et al.  PI3K and cancer: lessons, challenges and opportunities , 2014, Nature Reviews Drug Discovery.

[14]  R. Pepperkok,et al.  PIP3 Induces the Recycling of Receptor Tyrosine Kinases , 2014, Science Signaling.

[15]  T. Balla,et al.  Pharmacological and Genetic Targeting of the PI4KA Enzyme Reveals Its Important Role in Maintaining Plasma Membrane Phosphatidylinositol 4-Phosphate and Phosphatidylinositol 4,5-Bisphosphate Levels* , 2014, The Journal of Biological Chemistry.

[16]  Jared E. Toettcher,et al.  Using Optogenetics to Interrogate the Dynamic Control of Signal Transmission by the Ras/Erk Module , 2013, Cell.

[17]  Mitsuru Hattori,et al.  Bioluminescent probes to analyze ligand-induced phosphatidylinositol 3,4,5-trisphosphate production with split luciferase complementation. , 2013, Analytical chemistry.

[18]  A. Haegebarth,et al.  BAY 80-6946 Is a Highly Selective Intravenous PI3K Inhibitor with Potent p110α and p110δ Activities in Tumor Cell Lines and Xenograft Models , 2013, Molecular Cancer Therapeutics.

[19]  Xiang Zhou,et al.  Regulation of Mammalian Autophagy by Class II and III PI 3-Kinases through PI3P Synthesis , 2013, PloS one.

[20]  S. Akira,et al.  The second messenger phosphatidylinositol-5-phosphate facilitates antiviral innate immune signaling. , 2013, Cell host & microbe.

[21]  John A. Tallarico,et al.  PIKfyve, a class III PI kinase, is the target of the small molecular IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. , 2013, Chemistry & biology.

[22]  Doriano Fabbro,et al.  Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. , 2013, Bioorganic & medicinal chemistry letters.

[23]  T. Balla,et al.  Phosphoinositides: tiny lipids with giant impact on cell regulation. , 2013, Physiological reviews.

[24]  S. Colombo,et al.  PI(4,5)P2-Dependent and Ca2+-Regulated ER-PM Interactions Mediated by the Extended Synaptotagmins , 2013, Cell.

[25]  S. Hell,et al.  Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment , 2013, Nature Structural &Molecular Biology.

[26]  K. Venkatesh,et al.  Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration , 2013, Proceedings of the National Academy of Sciences.

[27]  Frank Noé,et al.  Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate , 2013, Nature.

[28]  R. Habets,et al.  Synaptic PI(3,4,5)P3 Is Required for Syntaxin1A Clustering and Neurotransmitter Release , 2013, Neuron.

[29]  Lopamudra Giri,et al.  Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension , 2013, Proceedings of the National Academy of Sciences.

[30]  I. Flinn,et al.  GS-1101: A Delta-Specific PI3K Inhibitor in Chronic Lymphocytic Leukemia , 2013, Current Hematologic Malignancy Reports.

[31]  Sang Yoon Lee,et al.  PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity , 2012, The Journal of cell biology.

[32]  M. Wymann,et al.  The Chemical Biology of Phosphoinositide 3‐Kinases , 2012, Chembiochem : a European journal of chemical biology.

[33]  A. Shisheva,et al.  Functional dissociation between PIKfyve-synthesized PtdIns5P and PtdIns(3,5)P2 by means of the PIKfyve inhibitor YM201636. , 2012, American journal of physiology. Cell physiology.

[34]  T. Balla,et al.  PI4P and PI(4,5)P2 Are Essential But Independent Lipid Determinants of Membrane Identity , 2012, Science.

[35]  K. Inoki,et al.  Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1 , 2012, Molecular biology of the cell.

[36]  B. Hille,et al.  Regulation of voltage-gated potassium channels by PI(4,5)P2 , 2012, The Journal of general physiology.

[37]  C. Villalba-Galea New insights in the activity of voltage sensitive phosphatases. , 2012, Cellular signalling.

[38]  S. Ward,et al.  Targeting PI3K isoforms and SHIP in the immune system: new therapeutics for inflammation and leukemia. , 2012, Current opinion in pharmacology.

[39]  P. De Camilli,et al.  Optogenetic control of phosphoinositide metabolism , 2012, Proceedings of the National Academy of Sciences.

[40]  Y. Okamura,et al.  3′ Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP) , 2012, Proceedings of the National Academy of Sciences.

[41]  T. Balla,et al.  Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms , 2012, Trends in Biochemical Sciences.

[42]  Josiah P. Zayner,et al.  TULIPs: Tunable, light-controlled interacting protein tags for cell biology , 2012, Nature Methods.

[43]  R. De Francesco,et al.  Metabolism of Phosphatidylinositol 4-Kinase IIIα-Dependent PI4P Is Subverted by HCV and Is Targeted by a 4-Anilino Quinazoline with Antiviral Activity , 2012, PLoS pathogens.

[44]  J. Doudna,et al.  RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.

[45]  Takanari Inoue,et al.  Triggering Actin Comets Versus Membrane Ruffles: Distinctive Effects of Phosphoinositides on Actin Reorganization , 2011, Science Signaling.

[46]  Hayder Amin,et al.  Membrane protein sequestering by ionic protein-lipid interactions , 2011, Nature.

[47]  M. Meisler,et al.  Genetic Interaction between MTMR2 and FIG4 Phospholipid Phosphatases Involved in Charcot-Marie-Tooth Neuropathies , 2011, PLoS genetics.

[48]  Jared E. Toettcher,et al.  Light-based feedback for controlling intracellular signaling dynamics , 2011, Nature Methods.

[49]  L. Pott,et al.  A Genetically Encoded Tool Kit for Manipulating and Monitoring Membrane Phosphatidylinositol 4,5-Bisphosphate in Intact Cells , 2011, PloS one.

[50]  V. Laketa,et al.  Photoactivatable and cell-membrane-permeable phosphatidylinositol 3,4,5-trisphosphate. , 2011, Angewandte Chemie.

[51]  F. Bezanilla,et al.  Controlling the Activity of a Phosphatase and Tensin Homolog (PTEN) by Membrane Potential* , 2011, The Journal of Biological Chemistry.

[52]  Takanari Inoue,et al.  A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity. , 2011, Journal of the American Chemical Society.

[53]  D. Toomre,et al.  A new wave of cellular imaging. , 2010, Annual review of cell and developmental biology.

[54]  M. Ehlers,et al.  Rapid blue light induction of protein interactions in living cells , 2010, Nature Methods.

[55]  R. Woscholski,et al.  Characterisation of the PTEN inhibitor VO-OHpic , 2010, Journal of chemical biology.

[56]  R. Pepperkok,et al.  Activation of membrane-permeant caged PtdIns(3)P induces endosomal fusion in cells. , 2010, Nature chemical biology.

[57]  P. Várnai,et al.  Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling , 2010, Proceedings of the National Academy of Sciences.

[58]  J. Clohessy,et al.  A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. , 2010, The Journal of clinical investigation.

[59]  B. Hille,et al.  Kinetics of PIP2 metabolism and KCNQ2/3 channel regulation studied with a voltage-sensitive phosphatase in living cells , 2010, The Journal of general physiology.

[60]  Youngjun Kim,et al.  Mass spectrometry based cellular phosphoinositides profiling and phospholipid analysis: A brief review , 2010, Experimental & Molecular Medicine.

[61]  C. Burd,et al.  PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking , 2009, The Journal of cell biology.

[62]  R. Pepperkok,et al.  Membrane-permeant phosphoinositide derivatives as modulators of growth factor signaling and neurite outgrowth. , 2009, Chemistry & biology.

[63]  Michelle M. Ng,et al.  GOLPH3 Bridges Phosphatidylinositol-4- Phosphate and Actomyosin to Stretch and Shape the Golgi to Promote Budding , 2009, Cell.

[64]  Christopher A. Voigt,et al.  Spatiotemporal Control of Cell Signalling Using A Light-Switchable Protein Interaction , 2009, Nature.

[65]  G. Schiavo,et al.  Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P2 , 2009, The Biochemical journal.

[66]  T. Takenawa,et al.  A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique , 2009, Proceedings of the National Academy of Sciences.

[67]  D. Toomre,et al.  A Phosphoinositide Switch Controls the Maturation and Signaling Properties of APPL Endosomes , 2009, Cell.

[68]  P. Várnai,et al.  Visualization of Cellular Phosphoinositide Pools with GFP‐Fused Protein‐Domains , 2009, Current protocols in cell biology.

[69]  P. De Camilli,et al.  Mutations in phosphoinositide metabolizing enzymes and human disease. , 2009, Physiology.

[70]  K. Kinzler,et al.  Dissecting isoform selectivity of PI3K inhibitors: the role of non-conserved residues in the catalytic pocket. , 2008, The Biochemical journal.

[71]  P. De Camilli,et al.  Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down's syndrome , 2008, Proceedings of the National Academy of Sciences.

[72]  Tobias Meyer,et al.  Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging. , 2008, Molecular cell.

[73]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[74]  Guillermo Ayala,et al.  Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate , 2007, Proceedings of the National Academy of Sciences.

[75]  Tobias Meyer,et al.  Rapid Chemically Induced Changes of PtdIns(4,5)P2 Gate KCNQ Ion Channels , 2006, Science.

[76]  T. Meyer,et al.  PI(3,4,5)P3 and PI(4,5)P2 Lipids Target Proteins with Polybasic Clusters to the Plasma Membrane , 2006, Science.

[77]  Kevan M Shokat,et al.  Phosphatidylinositol 4-Kinase IIIβ Regulates the Transport of Ceramide between the Endoplasmic Reticulum and Golgi* , 2006, Journal of Biological Chemistry.

[78]  P. Várnai,et al.  Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells , 2006, The Journal of cell biology.

[79]  P. Parker,et al.  Compartmental signal modulation: Endosomal phosphatidylinositol 3-phosphate controls endosome morphology and selective cargo sorting , 2006, Proceedings of the National Academy of Sciences.

[80]  Pietro De Camilli,et al.  Phosphoinositides in cell regulation and membrane dynamics , 2006, Nature.

[81]  P. Várnai,et al.  Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. , 2006, Biochimica et biophysica acta.

[82]  C. Rommel,et al.  Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma. , 2006, Journal of medicinal chemistry.

[83]  H. Stenmark,et al.  Analyzing phosphoinositides and their interacting proteins , 2006, Nature Methods.

[84]  D. Decamp,et al.  A targeted mass spectrometric analysis of phosphatidylinositol phosphate species Published, JLR Papers in Press, May 16, 2005. DOI 10.1194/jlr.D500010-JLR200 , 2005, Journal of Lipid Research.

[85]  Yasushi Okamura,et al.  Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor , 2005, Nature.

[86]  E. Neher,et al.  Plasmalemmal Phosphatidylinositol-4,5-Bisphosphate Level Regulates the Releasable Vesicle Pool Size in Chromaffin Cells , 2005, The Journal of Neuroscience.

[87]  P. Várnai,et al.  A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. , 2005, Molecular biology of the cell.

[88]  Wen Hong Li,et al.  Critical role of PIP5KIγ87 in InsP3-mediated Ca2+ signaling , 2004, The Journal of cell biology.

[89]  T. Levine,et al.  Multiple Pools of Phosphatidylinositol 4-Phosphate Detected Using the Pleckstrin Homology Domain of Osh2p* , 2004, Journal of Biological Chemistry.

[90]  R. Fitzsimonds,et al.  Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking , 2004, Nature.

[91]  R. K. McEwen,et al.  Svp1p defines a family of phosphatidylinositol 3,5‐bisphosphate effectors , 2004, The EMBO journal.

[92]  D. Alessi,et al.  FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P , 2004, Nature Cell Biology.

[93]  Y. Umezawa,et al.  Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis , 2003, Nature Cell Biology.

[94]  Junying Yuan,et al.  The PHD Finger of the Chromatin-Associated Protein ING2 Functions as a Nuclear Phosphoinositide Receptor , 2003, Cell.

[95]  R. Nussbaum,et al.  Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry , 2003, Nature Biotechnology.

[96]  T. Meyer,et al.  A PI3-Kinase Signaling Code for Insulin-Triggered Insertion of Glucose Transporters into the Plasma Membrane , 2002, Current Biology.

[97]  Jerónimo Bravo,et al.  Binding of the PX domain of p47phox to phosphatidylinositol 3,4‐bisphosphate and phosphatidic acid is masked by an intramolecular interaction , 2002, The EMBO journal.

[98]  S. Munro,et al.  Targeting of Golgi-Specific Pleckstrin Homology Domains Involves Both PtdIns 4-Kinase-Dependent and -Independent Components , 2002, Current Biology.

[99]  D. Hilgemann,et al.  Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. , 2002, Analytical biochemistry.

[100]  L Shapiro,et al.  G-Protein Signaling Through Tubby Proteins , 2001, Science.

[101]  J. Hurley,et al.  Subcellular targeting by membrane lipids. , 2001, Current opinion in cell biology.

[102]  W. Almers,et al.  A real-time view of life within 100 nm of the plasma membrane , 2001, Nature Reviews Molecular Cell Biology.

[103]  S. Dowler,et al.  Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. , 2000, The Biochemical journal.

[104]  M. Lindsay,et al.  Localization of phosphatidylinositol 3‐phosphate in yeast and mammalian cells , 2000, The EMBO journal.

[105]  Alexander G. Gray,et al.  The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. , 1999, The Biochemical journal.

[106]  J. Tavaré,et al.  Confocal imaging of the subcellular distribution of phosphatidylinositol 3,4,5-trisphosphate in insulin- and PDGF-stimulated 3T3-L1 adipocytes. , 1999, The Biochemical journal.

[107]  D. McCormick,et al.  Essential Role of Phosphoinositide Metabolism in Synaptic Vesicle Recycling , 1999, Cell.

[108]  P. Várnai,et al.  Phosphatidylinositol 3-Kinase-dependent Membrane Association of the Bruton’s Tyrosine Kinase Pleckstrin Homology Domain Visualized in Single Living Cells* , 1999, The Journal of Biological Chemistry.

[109]  Carlos Cordon-Cardo,et al.  Pten is essential for embryonic development and tumour suppression , 1998, Nature Genetics.

[110]  A. Chawla,et al.  A functional PtdIns(3)P-binding motif , 1998, Nature.

[111]  Rein Aasland,et al.  FYVE fingers bind PtdIns(3)P , 1998, Nature.

[112]  C. Burd,et al.  Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. , 1998, Molecular cell.

[113]  S. Munro,et al.  The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes , 1998, Current Biology.

[114]  Tobias Meyer,et al.  Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells , 1998, Current Biology.

[115]  F. McCormick,et al.  Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. , 1998, Science.

[116]  L. Cantley,et al.  Regulation of GRP1-catalyzed ADP Ribosylation Factor Guanine Nucleotide Exchange by Phosphatidylinositol 3,4,5-Trisphosphate* , 1998, The Journal of Biological Chemistry.

[117]  Péter Várnai,et al.  Visualization of Phosphoinositides That Bind Pleckstrin Homology Domains: Calcium- and Agonist-induced Dynamic Changes and Relationship to Myo-[3H]inositol-labeled Phosphoinositide Pools , 1998, The Journal of cell biology.

[118]  K. Catt,et al.  Isolation and Molecular Cloning of Wortmannin-sensitive Bovine Type III Phosphatidylinositol 4-Kinases* , 1997, The Journal of Biological Chemistry.

[119]  L. Cantley,et al.  Cloning and Characterization of a Wortmannin-sensitive Human Phosphatidylinositol 4-Kinase* , 1997, The Journal of Biological Chemistry.

[120]  R. Abraham,et al.  Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3‐kinase inhibitors, wortmannin and LY294002. , 1996, The EMBO journal.

[121]  Shannon R. Magari,et al.  A humanized system for pharmacologic control of gene expression , 1996, Nature Medicine.

[122]  S. Schreiber,et al.  Dimeric ligands define a role for transcriptional activation domains in reinitiation , 1996, Nature.

[123]  K. Catt,et al.  Characterization of a soluble adrenal phosphatidylinositol 4-kinase reveals wortmannin sensitivity of type III phosphatidylinositol kinases. , 1996, Biochemistry.

[124]  K Y Hui,et al.  A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). , 1994, The Journal of biological chemistry.

[125]  A. Arcaro,et al.  Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. , 1993, The Biochemical journal.

[126]  A. Tengholm,et al.  Imaging phosphoinositide dynamics in living cells. , 2010, Methods in molecular biology.

[127]  Bernd Giese,et al.  Targeting phosphoinositide 3-kinase: moving towards therapy. , 2008, Biochimica et biophysica acta.