Subspace identification for operational modal analysis

This chapter deals with the estimation of modal parameters from measured vibration data using subspace techniques. An in-depth review of subspace identification for operational modal analysis is provided. In addition, two recent developments are emphasised: the estimation of the probability density function of the modal parameters, and the use of an exogenous force in addition to the unmeasured operational excitation.

[1]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[2]  G. De Roeck,et al.  Z24 bridge damage detection tests , 1999 .

[3]  Rik Pintelon,et al.  Box-Jenkins identification revisited - Part III: Multivariable systems , 2007, Autom..

[4]  Bart Peeters,et al.  COMPARATIVE STUDY OF MODAL ANALYSIS TECHNIQUES FOR BRIDGE DYNAMIC CHARACTERISTICS , 2003 .

[5]  Paul A. Durbin,et al.  Fluid dynamics with a computational perspective , 2007 .

[6]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[7]  J. Juang Applied system identification , 1994 .

[8]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[10]  Max Donath,et al.  American Control Conference , 1993 .

[11]  H. Akaike Stochastic theory of minimal realization , 1974 .

[12]  Edward R. Dougherty,et al.  Random processes for image and signal processing , 1998, SPIE / IEEE series on imaging science and engineering.

[13]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[14]  B. Peeters,et al.  Stochastic System Identification for Operational Modal Analysis: A Review , 2001 .

[15]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[16]  H. Zeiger,et al.  Approximate linear realizations of given dimension via Ho's algorithm , 1974 .

[17]  H. Akaike Markovian Representation of Stochastic Processes by Canonical Variables , 1975 .

[18]  Lennart Ljung,et al.  Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms , 2002, Autom..

[19]  P. Van Overschee,et al.  A unifying theorem for three subspace system identification algorithms , 1994 .

[20]  Sun-Yuan Kung,et al.  A new identification and model reduction algorithm via singular value decomposition , 1978 .

[21]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[22]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[23]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[24]  Guido De Roeck,et al.  Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis , 2006 .

[25]  Dietmar Bauer,et al.  Comparing the CCA Subspace Method to Pseudo Maximum Likelihood Methods in the case of No Exogenous Inputs , 2005 .

[26]  Paul Sas,et al.  Modal Analysis Theory and Testing , 2005 .

[27]  E. Parloo,et al.  Maximum likelihood identification of non-stationary operational data , 2003 .

[28]  Guido De Roeck,et al.  REFERENCE-BASED STOCHASTIC SUBSPACE IDENTIFICATION FOR OUTPUT-ONLY MODAL ANALYSIS , 1999 .

[29]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[30]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[31]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[32]  P. Durbin,et al.  Statistical Theory and Modeling for Turbulent Flows , 2001 .

[33]  B. Peeters,et al.  Continuous-Time Operational ModalAnalysis- inthePresence ofHarmonic Disturbances , 2008 .

[34]  E. Parloo,et al.  Combined Deterministic-Stochastic Frequency-Domain Subspace Identification for Experimental and Operational Modal Analysis , 2004 .

[35]  Guido De Roeck,et al.  Continuous Vibration Monitoring and Progressive Damage Testing on the Z24 Bridge , 2009 .

[36]  Rik Pintelon,et al.  Uncertainty bounds on modal parameters obtained from stochastic subspace identification , 2008 .

[37]  M. Deistler,et al.  On the Impact of Weighting Matrices in Subspace Algorithms , 2000 .

[38]  K. Arun,et al.  Balanced approximation of stochastic systems , 1990 .

[39]  Guido De Roeck,et al.  The state‐of‐the‐art of damage detection by vibration monitoring: the SIMCES experience , 2003 .

[40]  A. Chiuso,et al.  The asymptotic variance of subspace estimates , 2004 .

[41]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[42]  Geert Degrande,et al.  Finite element modelling of a silo based on experimental modal analysis , 2006 .

[43]  Rik Pintelon,et al.  Brief paper: Box-Jenkins identification revisited-Part III , 2007 .

[44]  Rik Pintelon,et al.  Uncertainty calculation in (operational) modal analysis , 2007 .

[45]  Matthew S. Allen,et al.  A global, single-input-multi-output (SIMO) implementation of the algorithm of mode isolation and application to analytical and experimental data , 2006 .

[46]  Jan R. Wright,et al.  An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification , 1987 .