Perturbations of Compressed Data Separation With Redundant Tight Frames

In the era of big data, the multi-modal data can be seen everywhere. Research on such data has attracted extensive attention in the past few years. In this paper, we investigate the perturbations of compressed data separation with redundant tight frames via <inline-formula> <tex-math notation="LaTeX">$\tilde {\boldsymbol {\Phi }}\text {-}{\ell _{q}}$ </tex-math></inline-formula>-minimization. By exploiting the properties of the redundant tight frame and the perturbation matrix, i.e., mutual coherence, null space property, and restricted isometry property, the condition on reconstruction of sparse signal with redundant tight frames is established, and the error estimation between the local optimal solution and the original signal is also provided. Numerical experiments are carried out to show that <inline-formula> <tex-math notation="LaTeX">$\tilde {\boldsymbol {\Phi }}\text {-}{\ell _{q}}$ </tex-math></inline-formula>-minimization is robust and stable for the reconstruction of sparse signal with redundant tight frames. To our knowledge, our works may be the first study concerning the perturbations of the measurement matrix and the redundant tight frame for compressed data separation.

[1]  Michael Elad,et al.  On the Role of Sparse and Redundant Representations in Image Processing , 2010, Proceedings of the IEEE.

[2]  F. Helmchen,et al.  In vivo calcium imaging of neural network function. , 2007, Physiology.

[3]  Jianjun Wang,et al.  A Simple Gaussian Measurement Bound for Exact Recovery of Block-Sparse Signals , 2014 .

[4]  Guang-Hong Chen,et al.  Prior image constrained compressed sensing (PICCS) , 2008, SPIE BiOS.

[5]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[6]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[7]  Zongben Xu,et al.  L1/2 regularization , 2010, Science China Information Sciences.

[8]  Thomas Strohmer,et al.  General Deviants: An Analysis of Perturbations in Compressed Sensing , 2009, IEEE Journal of Selected Topics in Signal Processing.

[9]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[10]  Gitta Kutyniok,et al.  Microlocal Analysis of the Geometric Separation Problem , 2010, ArXiv.

[11]  Paul G. Fernandes,et al.  Proposals for the collection of multifrequency acoustic data , 2008 .

[12]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[13]  Zongben Xu,et al.  Regularization: Convergence of Iterative Half Thresholding Algorithm , 2014 .

[14]  Song Li,et al.  Restricted q-Isometry Properties Adapted to Frames for Nonconvex lq-Analysis , 2016, IEEE Trans. Inf. Theory.

[15]  J. Romberg,et al.  Imaging via Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[16]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[17]  Barak A. Pearlmutter,et al.  Blind Source Separation by Sparse Decomposition in a Signal Dictionary , 2001, Neural Computation.

[18]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[19]  Elena Braverman,et al.  Stable recovery of analysis based approaches , 2015 .

[20]  Rémi Gribonval,et al.  The restricted isometry property meets nonlinear approximation with redundant frames , 2011, J. Approx. Theory.

[21]  Zongben Xu,et al.  On recovery of block-sparse signals via mixed l 2 / l q ( 0 < q ≤ 1 ) normminimization , 2013 .

[22]  Wang Yao,et al.  L 1/2 regularization , 2010 .

[23]  Akram Aldroubi,et al.  Perturbations of measurement matrices and dictionaries in compressed sensing , 2012 .

[24]  Song Li,et al.  Compressed Sensing with coherent tight frames via $l_q$-minimization for $0 , 2011, ArXiv.

[25]  Gitta Kutyniok,et al.  Data Separation by Sparse Representations , 2011, Compressed Sensing.

[26]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[27]  J. Romberg Imaging via Compressive Sampling [Introduction to compressive sampling and recovery via convex programming] , 2008 .

[28]  Song Li,et al.  Compressed Data Separation With Redundant Dictionaries , 2013, IEEE Transactions on Information Theory.

[29]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.