Improving Energy Efficiency in CNC Machining

We present our work on analyzing and improving the energy efficiency of multi-axis CNC milling process.Due to the differences in energy consumption behavior, we treat 3- and 5-axis CNC machines separately in our work. For 3-axis CNC machines, we first propose an energy model that estimates the energy requirement for machining a component on a specified 3-axis CNC milling machine. Our model makes machine-specific predictions of energy requirements while also considering the geometric aspects of the machining toolpath. Our model - and the associated software tool - facilitate direct comparison of various alternative toolpath strategies based on their energy-consumption performance.Further, we identify key factors in toolpath planning that affect energy consumption in CNC machining. We then use this knowledge to propose and demonstrate a novel toolpath planning strategy that may be used to generate new toolpaths that are inherently energy-efficient, inspired by research on digital micrography -a form of computational art. For 5-axis CNC machines, the process planning problem consists of several sub-problems that researchers have traditionally solved separately to obtain an approximate solution. After illustrating the need to solve all sub-problems simultaneously for a truly optimal solution, we propose a unified formulation based on configuration space theory. We apply our formulation to solve a problem variant that retains key characteristics of the full problem but has lower dimensionality, allowing visualization in 2D. Given the complexity of the full 5-axis toolpath planning problem, our unified formulation represents an important step towards obtaining a truly optimal solution. With this work on the two types of CNC machines, we demonstrate that without changing the current infrastructure or business practices, machine-specific, geometry-based, customized toolpath planning can save energy in CNC machining.

[1]  Debasish Dutta,et al.  An integrated system for NC machining of multi-patch surfaces , 1997, Comput. Aided Des..

[2]  Matthieu Rauch,et al.  Improving trochoidal tool paths generation and implementation using process constraints modelling , 2009 .

[3]  Makoto Fujishima,et al.  A study on energy efficiency improvement for machine tools , 2011 .

[4]  Edward M. Trent CHAPTER 2 – Metal cutting operations and terminology , 1991 .

[5]  Min-Yang Yang,et al.  The prediction of cutting force in ball-end milling , 1991 .

[6]  Zhonglin Han,et al.  Isophote-based ruled surface approximation of free-form surfaces and its application in NC machining , 2001 .

[7]  Yuan-Shin Lee,et al.  Optimizing tool orientations for 5-axis machining by configuration-space search method , 2003, Comput. Aided Des..

[8]  David Dornfeld,et al.  Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use , 2011 .

[9]  Armando Fox,et al.  Improving Machine Tool Interoperability Using Standardized Interface Protocols: MT Connect , 2008 .

[10]  Paul Mativenga,et al.  Impact of Machine Tools on the Direct Energy and Associated Carbon Emissions for a Standardized NC Toolpath , 2013 .

[11]  T. Gutowski,et al.  Electrical Energy Requirements for Manufacturing Processes , 2006 .

[12]  Paul J. Gray,et al.  Rolling ball method for 5-axis surface machining , 2003, Comput. Aided Des..

[13]  Peihua Gu,et al.  Recent development in CNC machining of freeform surfaces: A state-of-the-art review , 2010, Comput. Aided Des..

[14]  Shankar P. Bhattacharyya,et al.  A measurement based approach for linear circuit modeling and design , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[15]  Sami Kara,et al.  Unit process energy consumption models for material removal processes , 2011 .

[16]  Kuldip Singh Sangwan,et al.  Development of a model of barriers to environmentally conscious manufacturing implementation , 2014 .

[17]  Sanjay E. Sarma,et al.  Generating 5-axis NC roughing paths directly from a tessellated representation , 2000, Comput. Aided Des..

[18]  Stephen Mann,et al.  A classified bibliography of literature on NC milling path generation , 1997, Comput. Aided Des..

[19]  Daniel Roos,et al.  The machine that changed the world : the story of lean production , 1991 .

[20]  Jian Liu,et al.  Optimization of tool positions locally based on the BCELTP for 5-axis machining of free-form surfaces , 2010, Comput. Aided Des..

[21]  Hsi-Yung Feng,et al.  An improved tool path discretization method for five-axis sculptured surface machining , 2007 .

[22]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[23]  Yusuf Altintas,et al.  Prediction of Milling Force Coefficients From Orthogonal Cutting Data , 1996 .

[24]  Der-Min Tsay,et al.  Removing tool marks of blade surfaces by smoothing five-axis point milling cutter paths , 2009 .

[25]  Wim Dewulf,et al.  Unit process impact assessment for discrete part manufacturing: A state of the art , 2010 .

[26]  V. M. Kureichik,et al.  Parallel genetic algorithms: a survey and problem state of the art , 2010 .

[27]  Erkan Ülker,et al.  An artificial immune system approach to CNC tool path generation , 2009, J. Intell. Manuf..

[28]  Yean-Ren Hwang,et al.  Five-axis tool orientation smoothing using quaternion interpolation algorithm , 2003 .

[29]  Hsi-Yung Feng,et al.  Effect of tool tilt angle on machining strip width in five-axis flat-end milling of free-form surfaces , 2009 .

[30]  Lihui Wang,et al.  Simplified and efficient calibration of a mechanistic cutting force model for ball-end milling , 2004 .

[31]  Stanislav S. Makhanov,et al.  Curvilinear space-filling curves for five-axis machining , 2008, Comput. Aided Des..

[32]  Dong-Woo Cho,et al.  An Improved Method for the Determination of 3D Cutting Force Coefficients and Runout Parameters in End Milling , 2000 .

[33]  Chih-Ching Lo,et al.  Efficient cutter-path planning for five-axis surface machining with a flat-end cutter , 1999, Comput. Aided Des..

[34]  C. G. Jensen,et al.  A review of numerically controlled methods for finish-sculptured-surface machining , 1996 .

[35]  Paul Mativenga,et al.  Modelling of direct energy requirements in mechanical machining processes , 2013 .

[36]  Sangkee Min,et al.  Development of an energy consumption monitoring procedure for machine tools , 2012 .

[37]  Hsi-Yung Feng,et al.  The prediction of cutting forces in the ball-end milling process—I. Model formulation and model building procedure , 1994 .

[38]  Y. Chen,et al.  A three-dimensional configuration-space method for 5-axis tessellated surface machining , 2008, Int. J. Comput. Integr. Manuf..

[39]  Yoshimi Takeuchi,et al.  Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining , 1997 .

[40]  S. A. Tobias Machine-tool vibration , 1965 .

[41]  Bert Bras,et al.  Environmentally benign manufacturing – A workshop report , 2006 .

[42]  Piyush Bubna,et al.  Selection of master cutter paths in sculptured surface machining by employing curvature principle , 2005 .

[43]  Pedro A. Castillo,et al.  GPU Computation in Bioinspired Algorithms: A Review , 2011, IWANN.

[44]  Gregory C Loney,et al.  NC machining of free form surfaces , 1987 .

[45]  Paul J. Gray,et al.  Arc-intersect method for 5-axis tool positioning , 2005, Comput. Aided Des..

[46]  Jun Ni,et al.  Real-time CNC tool path generation for machining IGES surfaces , 1993 .

[47]  Paul K. Wright,et al.  Toolpath optimization for minimizing airtime during machining , 2003 .

[48]  Vimal Dhokia,et al.  Energy efficient process planning for CNC machining , 2012 .

[49]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[50]  Rida T. Farouki,et al.  Optimal tool orientation control for 5-axis CNC milling with ball-end cutters , 2013, Comput. Aided Geom. Des..

[51]  Kai Tang,et al.  Five-axis tool path generation for a flat-end tool based on iso-conic partitioning , 2008, Comput. Aided Des..

[52]  Hsi-Yung Feng,et al.  Efficient five-axis machining of free-form surfaces with constant scallop height tool paths , 2004 .

[53]  Gershon Elber,et al.  Precise global collision detection in multi-axis NC-machining , 2005, Comput. Aided Des..

[54]  Gershon Elber,et al.  MATHSM: medial axis transform toward high speed machining of pockets , 2005, Comput. Aided Des..

[55]  Tao Ye,et al.  Geometric parameter optimization in multi-axis machining , 2008, Comput. Aided Des..

[56]  Lutfi Taner Tunc,et al.  Modeling and simulation of 5-axis milling processes , 2009 .

[57]  Ralph R. Martin,et al.  Two-dimensional visibility charts for continuous curves , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[58]  Robert B. Jerard,et al.  C-space approach to tool-path generation for die and mould machining , 1997, Comput. Aided Des..

[59]  Andreas Zabel,et al.  Optimizing NC-tool paths for simultaneous five-axis milling based on multi-population multi-objective evolutionary algorithms , 2009, Adv. Eng. Softw..

[60]  Gershon Elber,et al.  Toolpath generation for freeform surface models , 1994, Comput. Aided Des..

[61]  Kenneth A. De Jong,et al.  An Analysis of the Interacting Roles of Population Size and Crossover in Genetic Algorithms , 1990, PPSN.

[62]  Yoram Koren,et al.  Efficient Tool-Path Planning for Machining Free-Form Surfaces , 1996 .

[63]  Yunfeng Zhang,et al.  Cloud data modelling employing a unified, non-redundant triangular mesh , 2001, Comput. Aided Des..

[64]  F. Ismail,et al.  Machining chatter in flank milling , 2010 .

[65]  Nan Wang,et al.  Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath , 2007, Comput. Aided Des..

[66]  S. S. Makhanov Space-filling curves in adaptive curvilinear coordinates for computer numerically controlled five-axis machining , 2009, Math. Comput. Simul..

[67]  J. Tlusty,et al.  Basic Non-Linearity in Machining Chatter , 1981 .

[68]  Daniel C. H. Yang,et al.  Iso-phote Based Tool-path Generation for Machining Free-form Surfaces , 1999 .

[69]  Paul K. Wright,et al.  Zig-Zag Tool Path Generation for Sculptured Surface Finishing , 2003, Geometric and Algorithmic Aspects of Computer-Aided Design and Manufacturing.

[70]  Paul J. Gray,et al.  Arc-intersect method for 31212-axis tool paths on a 5-axis machine , 2007 .

[71]  Dharmaraj Veeramani,et al.  Issues in patch-by-patch machining of compound sculptured surfaces , 1998 .

[72]  T. Gutowski,et al.  Environmentally benign manufacturing: Observations from Japan, Europe and the United States , 2005 .

[73]  Gandjar Kiswanto,et al.  Gouging elimination through tool lifting in tool path generation for five-axis milling based on faceted models , 2007 .

[74]  Krishnan Suresh,et al.  Constant Scallop-height Machining of Free-form Surfaces , 1994 .

[75]  Tao Wu,et al.  Analysis and estimation of energy consumption for numerical control machining , 2012 .

[76]  Paul Xirouchakis,et al.  Evaluating the use phase energy requirements of a machine tool system , 2011 .

[77]  Charles Gregory Jensen Analysis and synthesis of multi-axis sculptured surface machining , 1993 .

[78]  Gábor Lukács,et al.  Pocket machining based on contour-parallel tool paths generated by means of proximity maps , 1994, Comput. Aided Des..

[79]  Vadim Shapiro,et al.  Solving inverse configuration space problems by adaptive sampling , 2013, Comput. Aided Des..

[80]  David N. Kordonowy,et al.  A power assessment of machining tools , 2002 .

[81]  Chuang-Jang Chiou,et al.  A machining potential field approach to tool path generation for multi-axis sculptured surface machining , 2002, Comput. Aided Des..

[82]  Jianxin Pi,et al.  Grind-free tool path generation for five-axis surface machining , 1998 .

[83]  Rida T. Farouki,et al.  Inverse kinematics for optimal tool orientation control in 5-axis CNC machining , 2014, Comput. Aided Geom. Des..

[84]  S. Smith,et al.  An Overview of Modeling and Simulation of the Milling Process , 1991 .

[85]  Yusuf Altintas,et al.  Prediction of Cutting Forces and Tool Breakage in Milling from Feed Drive Current Measurements , 1992 .

[86]  Hsi-Yung Feng,et al.  Iso-planar piecewise linear NC tool path generation from discrete measured data points , 2004, Comput. Aided Des..

[87]  John G. Griffiths,et al.  A new cutter-path topology for milling machines , 1994, Comput. Aided Des..

[88]  Athulan Vijayaraghavan,et al.  Automated energy monitoring of machine tools , 2010 .