Reward, Motivation, and Reinforcement Learning

[1]  T. Robbins,et al.  Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens , 2004, Psychopharmacology.

[2]  F. Bloom,et al.  Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats , 2004, Psychopharmacology.

[3]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[4]  P. Montague,et al.  Neural Economics and the Biological Substrates of Valuation , 2002, Neuron.

[5]  Roland E. Suri,et al.  TD models of reward predictive responses in dopamine neurons , 2002, Neural Networks.

[6]  Peter Dayan,et al.  Dopamine: generalization and bonuses , 2002, Neural Networks.

[7]  Sham M. Kakade,et al.  Opponent interactions between serotonin and dopamine , 2002, Neural Networks.

[8]  J. N. P. Rawlins,et al.  Effects of cytotoxic nucleus accumbens lesions on instrumental conditioning in rats , 2002, Experimental Brain Research.

[9]  A. Phillips,et al.  Glutamate Receptor-Dependent Modulation of Dopamine Efflux in the Nucleus Accumbens by Basolateral, But Not Central, Nucleus of the Amygdala in Rats , 2002, The Journal of Neuroscience.

[10]  Catherine E. Myers,et al.  Cerebellar Substrates for Error Correction in Motor Conditioning , 2001, Neurobiology of Learning and Memory.

[11]  K. Berridge,et al.  Incentive Sensitization by Previous Amphetamine Exposure: Increased Cue-Triggered “Wanting” for Sucrose Reward , 2001, The Journal of Neuroscience.

[12]  J. Wickens,et al.  A cellular mechanism of reward-related learning , 2001, Nature.

[13]  B. Balleine,et al.  The Role of the Nucleus Accumbens in Instrumental Conditioning: Evidence of a Functional Dissociation between Accumbens Core and Shell , 2001, The Journal of Neuroscience.

[14]  Roland E. Suri,et al.  Temporal Difference Model Reproduces Anticipatory Neural Activity , 2001, Neural Computation.

[15]  Peter Dayan,et al.  Motivated Reinforcement Learning , 2001, NIPS.

[16]  B. Balleine,et al.  The Effect of Lesions of the Insular Cortex on Instrumental Conditioning: Evidence for a Role in Incentive Memory , 2000, The Journal of Neuroscience.

[17]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[18]  K. Berridge,et al.  Intra-Accumbens Amphetamine Increases the Conditioned Incentive Salience of Sucrose Reward: Enhancement of Reward “Wanting” without Enhanced “Liking” or Response Reinforcement , 2000, The Journal of Neuroscience.

[19]  S. Klein,et al.  Handbook of contemporary learning theories , 2000 .

[20]  J. Mirenowicz,et al.  Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. , 2000, Behavioral neuroscience.

[21]  K. Berridge,et al.  Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes , 2000, Brain Research.

[22]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[23]  E. Rolls The orbitofrontal cortex and reward. , 2000, Cerebral cortex.

[24]  K. Berridge Reward learning: Reinforcement, incentives, and expectations , 2000 .

[25]  E. Rolls,et al.  Memory systems in the brain. , 2000, Annual review of psychology.

[26]  Peter Dayan,et al.  Dopamine Bonuses , 2000, NIPS.

[27]  Matías López,et al.  Sensitivity of instrumental responses to an upshift in water deprivation , 1999 .

[28]  W. Schultz,et al.  A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task , 1999, Neuroscience.

[29]  K. Berridge,et al.  What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? , 1998, Brain Research Reviews.

[30]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[31]  A. Dickinson,et al.  Omission Learning after Instrumental Pretraining , 1998 .

[32]  W. Schultz,et al.  Learning of sequential movements by neural network model with dopamine-like reinforcement signal , 1998, Experimental Brain Research.

[33]  B. Balleine,et al.  Goal-directed instrumental action: contingency and incentive learning and their cortical substrates , 1998, Neuropharmacology.

[34]  Anna Rose Childress,et al.  Conditioning factors in drug abuse: can they explain compulsion? , 1998, Journal of psychopharmacology.

[35]  K. Berridge,et al.  Pimozide Does Not Shift Palatability: Separation of Anhedonia from Sensorimotor Suppression by Taste Reactivity , 1997, Pharmacology Biochemistry and Behavior.

[36]  S. Benoit,et al.  Encoding and selective activation of "metabolic memories" in the rat. , 1997, Behavioral neuroscience.

[37]  G. Britton,et al.  Classical conditioning provides paternity advantage for territorial male blue gouramis (Trichogaster trichopterus). , 1997 .

[38]  J. Bruno,et al.  Effects of AMPA and D1 receptor activation on striatal and nigral GABA efflux , 1997, Synapse.

[39]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[40]  A. Dickinson Bolles's psychological syllogism. , 1997 .

[41]  Pearce Animal learning and cognition , 1997 .

[42]  M. Bouton,et al.  Learning, motivation, and cognition : the functional behaviorism of Robert C. Bolles , 1997 .

[43]  A. Kelley,et al.  Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats. , 1996, The Journal of pharmacology and experimental therapeutics.

[44]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  Joseph B. Justice,et al.  Conditioned place preference and locomotor activation produced by injection of psychostimulants into ventral pallidum , 1996, Brain Research.

[46]  B. Balleine,et al.  Motivational Control of Instrumental Action , 1995 .

[47]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[48]  R. Boakes,et al.  Motivational control after extended instrumental training , 1995 .

[49]  L. Parker,et al.  Morphine-induced modification of quinine palatability: Effects of multiple morphine-quinine trials , 1995, Pharmacology Biochemistry and Behavior.

[50]  Joel L. Davis,et al.  In : Models of Information Processing in the Basal Ganglia , 2008 .

[51]  B. Balleine,et al.  Effects of ibotenic acid lesions of the Nucleus Accumbens on instrumental action , 1994, Behavioural Brain Research.

[52]  R. Colwill,et al.  Encoding of the unconditioned stimulus in Pavlovian conditioning , 1994 .

[53]  F. Toates Comparing motivational systems - An incentive motivation perspective , 1994 .

[54]  D. Booth,et al.  Appetite: neural and behavioural bases , 1994 .

[55]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[56]  B. Balleine,et al.  Benzodiazepine-induced outcome revaluation and the motivational control of instrumental action in rats. , 1994, Behavioral neuroscience.

[57]  B. Balleine Asymmetrical Interactions between Thirst and Hunger in Pavlovian-Instrumental Transfer , 1994, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[58]  B. Balleine,et al.  Motivational control of goal-directed action , 1994 .

[59]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[60]  J. Stellar,et al.  Regional reward differences within the ventral pallidum are revealed by microinjections of a mu opiate receptor agonist , 1993, Neuropharmacology.

[61]  K. Berridge,et al.  Morphine enhances hedonic taste palatability in rats , 1993, Pharmacology Biochemistry and Behavior.

[62]  Peter Dayan,et al.  Improving Generalization for Temporal Difference Learning: The Successor Representation , 1993, Neural Computation.

[63]  P. Holland Cognitive aspects of classical conditioning , 1993, Current Opinion in Neurobiology.

[64]  B. Balleine,et al.  Actions and responses: The dual psychology of behaviour. , 1993 .

[65]  L. Parker,et al.  Morphine- and naltrexone-induced modification of palatability: analysis by the taste reactivity test. , 1992, Behavioral neuroscience.

[66]  B. Balleine,et al.  Signalling and Incentive Processes in Instrumental Reinforcer Devaluation , 1992, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[67]  B. Balleine Instrumental performance following a shift in primary motivation depends on incentive learning. , 1992, Journal of experimental psychology. Animal behavior processes.

[68]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization , 1992, Trends in Neurosciences.

[69]  Adam Drewnowski,et al.  Taste responses and preferences for sweet high-fat foods: Evidence for opioid involvement , 1992, Physiology & Behavior.

[70]  G. Di Chiara,et al.  Neurobiology of opiate abuse. , 1992, Trends in pharmacological sciences.

[71]  B. Balleine,et al.  Instrumental Performance following Reinforcer Devaluation Depends upon Incentive Learning , 1991 .

[72]  G. Beauchamp,et al.  Naltrexone, an opioid blocker, alters taste perception and nutrient intake in humans. , 1991, The American journal of physiology.

[73]  J. Deakin,et al.  5-HT and mechanisms of defence , 1991, Journal of psychopharmacology.

[74]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[75]  E. Rolls,et al.  Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. , 1990, Journal of neurophysiology.

[76]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[77]  J. Lichtenberg On motivational systems. , 1990, Journal of the American Psychoanalytic Association.

[78]  B. Kolb,et al.  The Cerebral cortex of the rat , 1990 .

[79]  T. Robbins,et al.  Involvement of the amygdala in stimulus-reward associations: Interaction with the ventral striatum , 1989, Neuroscience.

[80]  E T Rolls,et al.  Information processing in the taste system of primates. , 1989, The Journal of experimental biology.

[81]  B. Gosnell,et al.  Centrally administered opioid peptides stimulate saccharin intake in nondeprived rats , 1989, Pharmacology Biochemistry and Behavior.

[82]  A. Dickinson,et al.  Reinforcer specificity of the suppression of instrumental performance on a non-contingent schedule , 1989, Behavioural Processes.

[83]  K. Berridge,et al.  Palatability Shift of a Salt-Associated Incentive during Sodium Depletion , 1989, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[84]  B. Balleine,et al.  Incentive learning and the motivational control of instrumental performance by thirst , 1989 .

[85]  A. R. Wagner,et al.  Evolution of a structured connectionist model of Pavlovian conditioning (AESOP). , 1989 .

[86]  Robert R. Mowrer,et al.  Contemporary Learning Theories , 1989 .

[87]  C. Clark,et al.  Dynamic Modeling in Behavioral Ecology , 2019 .

[88]  Edmund T. Rolls,et al.  The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger , 1988, Physiology & Behavior.

[89]  S. Dworkin,et al.  Lack of an effect of 6-hydroxydopamine lesions of the nucleus accumbens on intravenous morphine self-administration , 1988, Pharmacology Biochemistry and Behavior.

[90]  A. Dickinson,et al.  Motivational Control of Instrumental Performance: The Role of Prior Experience of The Reinforcer , 1988 .

[91]  R. Rescorla,et al.  Associations between the discriminative stimulus and the reinforcer in instrumental learning. , 1988 .

[92]  S. Grossberg Neural Networks and Natural Intelligence , 1988 .

[93]  B. Everitt,et al.  Studies of instrumental behavior with sexual reinforcement in male rats (Rattus norvegicus): II. Effects of preoptic area lesions, castration, and testosterone. , 1987, Journal of comparative psychology.

[94]  A. Dickinson,et al.  Pavlovian Processes in the Motivational Control of Instrumental Performance , 1987 .

[95]  W. Hershberger An approach through the looking-glass , 1986 .

[96]  R. Rescorla,et al.  Associative Structures In Instrumental Learning , 1986 .

[97]  C. Gerfen The neostriatal mosaic. I. compartmental organization of projections from the striatum to the substantia nigra in the rat , 1985, The Journal of comparative neurology.

[98]  A. Phillips,et al.  Dopaminergic mediation of reward produced by direct injection of enkephalin into the ventral tegmental area of the rat. , 1983, Life sciences.

[99]  Richard S. Sutton,et al.  Neuronlike adaptive elements that can solve difficult learning control problems , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[100]  R. Rescorla Simultaneous second-order conditioning produces S-S learning in conditioned suppression. , 1982, Journal of experimental psychology. Animal behavior processes.

[101]  L. J. Hammond The effect of contingency upon the appetitive conditioning of free-operant behavior. , 1980, Journal of the experimental analysis of behavior.

[102]  R. Hendersen,et al.  Avoidance of heat by rats: Effects of thermal context on rapidity of extinction , 1979 .

[103]  P. Holland,et al.  Differential effects of omission contingencies on various components of Pavlovian appetitive conditioned responding in rats. , 1979, Journal of experimental psychology. Animal behavior processes.

[104]  P. Taylor,et al.  Test of optimal sampling by foraging great tits , 1978 .

[105]  O. K. Fudim Sensory preconditioning of flavors with a formalin-produced sodium need. , 1978, Journal of experimental psychology. Animal behavior processes.

[106]  D. Bindra How adaptive behavior is produced: a perceptual-motivational alternative to response reinforcements , 1978, Behavioral and Brain Sciences.

[107]  R. Solomon,et al.  An Opponent-Process Theory of Motivation , 1978 .

[108]  P. Holland Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response. , 1977, Journal of experimental psychology. Animal behavior processes.

[109]  D. Bindra A motivational view of learning, performance, and behavior modification. , 1974, Psychological review.

[110]  R. Solomon,et al.  An opponent-process theory of motivation. I. Temporal dynamics of affect. , 1974, Psychological review.

[111]  N. Mackintosh The psychology of animal learning , 1974 .

[112]  J. D. A. M. E. Bitierman OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR DIFFERENTIAL REINFORCEMENT OF OTHER BEHAVIOR ( DRO ) : A YOKED-CONTROL COMPARISON ' , 2005 .

[113]  E. E. Krieckhaus "Innate recognition" aids rats in sodium regulation. , 1970, Journal of comparative and physiological psychology.

[114]  Isidore Gormezano,et al.  Effects of water deprivation on classical appetitive conditioning of the rabbit's jaw movement response , 1970 .

[115]  R. Rescorla Probability of shock in the presence and absence of CS in fear conditioning. , 1968, Journal of comparative and physiological psychology.

[116]  S. Ochs Integrative Activity of the Brain: An Interdisciplinary Approach , 1968 .

[117]  R. Rescorla,et al.  Two-process learning theory: Relationships between Pavlovian conditioning and instrumental learning. , 1967, Psychological review.

[118]  J. Konorski Integrative activity of the brain , 1967 .

[119]  R. Bolles Theory of Motivation , 1967 .

[120]  J. Konorski Integrative activity of the brain : an interdisciplinary approach , 1967 .

[121]  N. Miller,et al.  EFFECT OF STRENGTH OF DRIVE DETERMINED BY A NEW TECHNIQUE FOR APPETITIVE CLASSICAL CONDITIONING OF RATS. , 1965, Journal of comparative and physiological psychology.