The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations

The thermal conductivity of single-walled and multi-walled carbon nanotubes has been investigated as a function of the tube length L, temperature and chiral index using non-equilibrium molecular dynamics simulations. In the ballistic-diffusive regime the thermal conductivity follows a L(alpha) law. The exponent alpha is insensitive to the diameter of the carbon nanotube; alpha approximately 0.77 has been derived for short carbon nanotubes at room temperature. The temperature dependence of the thermal conductivity shows a peak before falling at higher temperatures (>500 K). The phenomenon of thermal rectification in nanotubes has been investigated by gradually changing the atomic mass in the tube-axial direction as well as by loading extra masses on the terminal sites of the tube. A higher thermal conductivity occurs when heat flows from the low-mass to the high-mass region.

[1]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[2]  Sokrates T. Pantelides,et al.  Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .

[3]  A. Majumdar,et al.  Breakdown of Fourier's law in nanotube thermal conductors. , 2007, Physical review letters.

[4]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[5]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[6]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[7]  Elliott H. Lieb,et al.  Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension , 1968 .

[8]  Florian Müller-Plathe,et al.  Parallelizing a Molecular Dynamics Algorithm on a Multiprocessor Workstation Using OpenMP , 2005, J. Chem. Inf. Model..

[9]  Clifford W. Padgett,et al.  Influence of Chemisorption on the Thermal Conductivity of Single-Wall Carbon Nanotubes , 2004 .

[10]  A. Charlier,et al.  Lattice dynamics study of zigzag and armchair carbon nanotubes , 1998 .

[11]  T. Ando,et al.  Chirality-Dependent Resistivity in Carbon Nanotubes , 2000 .

[12]  Jian Wang,et al.  Carbon nanotube thermal transport: Ballistic to diffusive , 2005 .

[13]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[14]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[15]  Florian Müller-Plathe,et al.  YASP: A molecular simulation package , 1993 .

[16]  Baowen Li,et al.  Thermal rectification and negative differential thermal resistance in lattices with mass gradient , 2007, 0707.0977.

[17]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[18]  Jennifer R. Lukes,et al.  Thermal Conductivity of Individual Single-Wall Carbon Nanotubes , 2007 .

[19]  A. Politi,et al.  Heat Conduction in Chains of Nonlinear Oscillators , 1997 .

[20]  J. F. Moreland,et al.  THE DISPARATE THERMAL CONDUCTIVITY OF CARBON NANOTUBES AND DIAMOND NANOWIRES STUDIED BY ATOMISTIC SIMULATION , 2004 .

[21]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[22]  Huaqing Xie,et al.  Measuring the thermal conductivity of a single carbon nanotube. , 2005, Physical review letters.

[23]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[24]  T. Choi,et al.  Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method , 2006 .

[25]  Mohamed A. Osman,et al.  Temperature dependence of the thermal conductivity of single-wall carbon nanotubes , 2001 .

[26]  Baowen Li,et al.  Thermal conduction of carbon nanotubes using molecular dynamics , 2005 .

[27]  J. Hone Phonons and Thermal Properties of Carbon Nanotubes , 2001 .

[28]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[29]  E. Lieb,et al.  Properties of a Harmonic Crystal in a Stationary Nonequilibrium State , 1967 .

[30]  O. Chauvet,et al.  Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites , 2002, cond-mat/0204520.

[31]  Avouris,et al.  [Topics in Applied Physics] Carbon Nanotubes Volume 80 || Applications of Carbon Nanotubes , 2001 .

[32]  Florian Müller-Plathe,et al.  Reverse Non-equilibrium Molecular Dynamics , 2004 .

[33]  Shigeo Maruyama,et al.  A molecular dynamics simulation of heat conduction in finite length SWNTs , 2002 .

[34]  Petros Koumoutsakos,et al.  Carbon nanotubes in water:structural characteristics and energetics , 2001 .