Control of Fuzzy Cellular Automata: The Case of Rule 90

This paper is dedicated to the study of fuzzy rule 90 in relation with control theory. The dynamics and global evolution of fuzzy rules have been recently investigated and some interesting results have been obtained in [10,15,16]. The long term evolution of all 256 one-dimensional fuzzy cellular automata (FCA) has been determined using an analytical approach. We are interested in this paper in the FCA state at a given time and ask whether it can coincide with a desired state by controlling only the initial condition. We investigate two initial states consisting of a single control value u on a background of zeros and one seed adjacent to the controlled site in a background of zeros.

[1]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[2]  Nicola Santoro,et al.  Convergence and aperiodicity in fuzzy cellular automata: Revisiting rule 90 , 1998 .

[3]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[4]  C. Desoer,et al.  Linear System Theory , 1963 .

[5]  R. J. Stonier,et al.  Complex Systems: Mechanism of Adaptation , 1994 .

[6]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[7]  G. Mauri,et al.  Cellular automata in fuzzy backgrounds , 1997 .

[8]  Samira El Yacoubi,et al.  Regional Controllability with Cellular Automata Models , 2002, ACRI.

[9]  Karel Culik,et al.  Undecidability of CA Classification Schemes , 1988, Complex Syst..

[10]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[11]  Angelo B. Mingarelli The Global Evolution of General Fuzzy Cellular Automata , 2006, J. Cell. Autom..

[12]  E. F. Codd,et al.  Cellular automata , 1968 .

[13]  Shui-Nee Chow,et al.  On the Control of Discrete-Time Distributed Parameter Systems , 1972 .

[14]  S. El Yacoubi,et al.  Cellular automata modelling and spreadability , 2002 .

[15]  Stephen Gilmore,et al.  Combining Measurement and Stochastic Modelling to Enhance Scheduling Decisions for a Parallel Mean Value Analysis Algorithm , 2006, International Conference on Computational Science.

[16]  R. Triggiani,et al.  Control Theory for Partial Differential Equations: Continuous and Approximation Theories , 2000 .

[17]  S. E. Yacoubi Notes on control and observation in cellular automata models , 2003 .

[18]  Samira El Yacoubi,et al.  A Genetic Programming Approach to Structural Identification of Cellular Automata , 2007, J. Cell. Autom..

[19]  Stephen Wolfram,et al.  Cellular Automata And Complexity , 1994 .

[20]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[21]  W. Rugh Linear System Theory , 1992 .

[22]  Leonid A. Bunimovich,et al.  Coupled map lattices: one step forward and two steps back Physica D 86 , 1995 .

[23]  Samira El Yacoubi,et al.  On the Decidability of the Evolution of the Fuzzy Cellular Automaton 184 , 2006, International Conference on Computational Science.