Estimation of Air Surface Temperature From Remote Sensing Images and Pixelwise Modeling of the Estimation Uncertainty Through Support Vector Machines

The knowledge of air temperature near the Earth's surface plays a relevant role in weather and climate studies as well as in the framework of solar energy management; e.g., for identifying the most suitable locations for a new solar installation or monitoring the performance of existing systems. Remote sensing allows air temperature to be estimated on a spatially distributed basis, thus complementing the spatially sparse observations collected by ground micro-meteorological stations. In this paper, a novel approach to periodic (e.g., daily or monthly) air temperature estimation from satellite images based on support vector machines (SVMs) is proposed. A recently developed SVM-based approach to supervised land and sea surface temperature estimation using satellite images is generalized to the case of air temperature and integrated with case-specific techniques aimed at computing periodic statistics of air temperature using the expectation-maximization algorithm. The method is fully automated and allows the statistics of the estimation error to be modeled on a pixelwise basis. This last result is accomplished by combining nonstationary multidimensional stochastic processes and Clark's variance approximation. The method is experimentally validated with MSG-SEVIRI data acquired over Provence-Alpes-Côte d'Azur (France).

[1]  S. Bonafoni,et al.  Satellite air temperature estimation for monitoring the canopy layer heat island of Milan , 2012 .

[2]  C. E. Clark The Greatest of a Finite Set of Random Variables , 1961 .

[3]  Farid Melgani,et al.  Gaussian Process Regression for Estimating Chlorophyll Concentration in Subsurface Waters From Remote Sensing Data , 2010, IEEE Geoscience and Remote Sensing Letters.

[4]  Junbin Gao,et al.  Mean field method for the support vector machine regression , 2003, Neurocomputing.

[5]  Andrew M. Ross Useful Bounds on the Expected Maximum of Correlated Normal Variables , 2003 .

[6]  F. Dikbaş,et al.  Analysis of temperature series: estimation of missing data and homogeneity test , 2012 .

[7]  Gabriele Moser,et al.  Partially Supervised classification of remote sensing images through SVM-based probability density estimation , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Chih-Jen Lin,et al.  Working Set Selection Using Second Order Information for Training Support Vector Machines , 2005, J. Mach. Learn. Res..

[9]  James T. Kwok,et al.  Bayesian Support Vector Regression , 2001, AISTATS.

[10]  Heinz Wanner,et al.  Comparison of climate field reconstruction techniques: application to Europe , 2009 .

[11]  D. Rajan Probability, Random Variables, and Stochastic Processes , 2017 .

[12]  Lorenzo Bruzzone,et al.  Kernel methods for remote sensing data analysis , 2009 .

[13]  L. Arboledas,et al.  A comparative study of algorithms for estimating land surface temperature from AVHRR Data , 1997 .

[14]  Philippe Ciais,et al.  Large‐scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011 , 2013, Global change biology.

[15]  Yong Xue,et al.  Air temperature retrieval from remote sensing data based on thermodynamics , 2005 .

[16]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[17]  Stephen J. Connor,et al.  Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model , 1999 .

[18]  T. Schneider Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. , 2001 .

[19]  L. Isaksen,et al.  A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF , 2013 .

[20]  Nuno Carvalhais,et al.  Estimating air surface temperature in Portugal using MODIS LST data , 2012 .

[21]  Nizar Bouguila,et al.  Finite asymmetric generalized Gaussian mixture models learning for infrared object detection , 2013, Comput. Vis. Image Underst..

[22]  Farid Melgani,et al.  Semisupervised PSO-SVM Regression for Biophysical Parameter Estimation , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[23]  M. Bosilovich,et al.  Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations , 2012 .

[24]  Sami Hanhijärvi,et al.  Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2,000 years , 2013, Climate Dynamics.

[25]  Jürgen Vogt,et al.  Mapping regional air temperature fields using satellite‐derived surface skin temperatures , 1997 .

[26]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[27]  Mehryar Mohri,et al.  Domain adaptation and sample bias correction theory and algorithm for regression , 2014, Theor. Comput. Sci..

[28]  Rasmus Fensholt,et al.  Estimation of diurnal air temperature using MSG SEVIRI data in West Africa , 2007 .

[29]  Josiane Zerubia,et al.  Markov Random Fields in Image Segmentation , 2012, Found. Trends Signal Process..

[30]  Arnt-Børre Salberg,et al.  Land Cover Classification of Cloud-Contaminated Multitemporal High-Resolution Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Gabriele Moser,et al.  Combining Support Vector Machines and Markov Random Fields in an Integrated Framework for Contextual Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Emilio Chuvieco,et al.  Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula , 2011 .

[33]  Ming-Wei Chang,et al.  Leave-One-Out Bounds for Support Vector Regression Model Selection , 2005, Neural Computation.

[34]  Gabriele Moser,et al.  Automatic Parameter Optimization for Support Vector Regression for Land and Sea Surface Temperature Estimation From Remote Sensing Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Gabriele Moser,et al.  Modeling the Error Statistics in Support Vector Regression of Surface Temperature From Infrared Data , 2009, IEEE Geoscience and Remote Sensing Letters.

[36]  I. Song,et al.  Working Set Selection Using Second Order Information for Training Svm, " Complexity-reduced Scheme for Feature Extraction with Linear Discriminant Analysis , 2022 .

[37]  J. El-Kharraz,et al.  Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site , 2004 .

[38]  G. Corsini,et al.  Radial Basis Function and Multilayer Perceptron neural networks for sea water optically active parameter estimation in case II waters: A comparison , 2003 .

[39]  François Anctil,et al.  Neural network estimation of air temperatures from AVHRR data , 2004 .

[40]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[41]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[42]  E. Oja,et al.  Independent Component Analysis , 2001 .

[43]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[44]  Sancho Salcedo-Sanz,et al.  Prediction of Daily Global Solar Irradiation Using Temporal Gaussian Processes , 2014, IEEE Geoscience and Remote Sensing Letters.

[45]  Naif Alajlan,et al.  Improved Estimation of Water Chlorophyll Concentration With Semisupervised Gaussian Process Regression , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Gabriele Moser,et al.  Land Surface Temperature Estimation from Passive Satellite Images using Support Vector Machines , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[47]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[48]  Andrew M. Ross Computing Bounds on the Expected Maximum of Correlated Normal Variables , 2010 .

[49]  S. Goward,et al.  Estimation of air temperature from remotely sensed surface observations , 1997 .

[50]  Marion Schroedter-Homscheidt,et al.  Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments , 2009 .

[51]  Wei Chu,et al.  Bayesian support vector regression using a unified loss function , 2004, IEEE Transactions on Neural Networks.

[52]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[53]  Junbin Gao,et al.  A Probabilistic Framework for SVM Regression and Error Bar Estimation , 2002, Machine Learning.

[54]  A-Xing Zhu,et al.  Prediction of Continental-Scale Evapotranspiration by Combining MODIS and AmeriFlux Data Through Support Vector Machine , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[55]  Farid Melgani,et al.  Gaussian Process Approach to Buried Object Size Estimation in GPR Images , 2010, IEEE Geoscience and Remote Sensing Letters.

[56]  Naif Alajlan,et al.  Active Learning Methods for Biophysical Parameter Estimation , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Junbin Gao,et al.  SVM regression through variational methods and its sequential implementation , 2003, Neurocomputing.

[58]  Lorenzo Bruzzone,et al.  Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Gabriele Moser,et al.  Land and Sea Surface Temperature Estimation by Support Vector Regression , 2009 .

[60]  Claudia Notarnicola,et al.  Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[61]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[62]  Keith W. Oleson,et al.  Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations , 2006 .

[63]  Debadatta Swain,et al.  Application of Artificial Neural Networks for Sea-Surface Wind-Speed Retrieval From IRS-P4 (MSMR) Brightness Temperature , 2010, IEEE Geoscience and Remote Sensing Letters.

[64]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[65]  Luis Gómez-Chova,et al.  Biophysical Parameter Estimation With a Semisupervised Support Vector Machine , 2009, IEEE Geoscience and Remote Sensing Letters.

[66]  Varun Chandola,et al.  A scalable gaussian process analysis algorithm for biomass monitoring , 2011, Stat. Anal. Data Min..

[67]  Sinan Sahin,et al.  The effect of the relative humidity and the specific humidity on the determination of the climate regions in Turkey , 2013, Theoretical and Applied Climatology.

[68]  Gustavo Camps-Valls,et al.  Retrieval of Biophysical Parameters With Heteroscedastic Gaussian Processes , 2014, IEEE Geoscience and Remote Sensing Letters.