Optimal Concentration of Information Content For Log-Concave Densities

An elementary proof is provided of sharp bounds for the varentropy of random vectors with log-concave densities, as well as for deviations of the information content from its mean. These bounds significantly improve on the bounds obtained by Bobkov and Madiman (Ann Probab 39(4):1528–1543, 2011).

[1]  G. Bennett Probability Inequalities for the Sum of Independent Random Variables , 1962 .

[2]  B. Klartag,et al.  Eigenvalue distribution of optimal transportation , 2014, 1402.2636.

[3]  A. W. van der Vaart,et al.  A local maximal inequality under uniform entropy. , 2010, Electronic journal of statistics.

[4]  Sergey G. Bobkov,et al.  The Entropy Per Coordinate of a Random Vector is Highly Constrained Under Convexity Conditions , 2010, IEEE Transactions on Information Theory.

[5]  Reinforcement of an inequality due to Brascamp and Lieb , 2008 .

[6]  Sergey G. Bobkov,et al.  Dimensional behaviour of entropy and information , 2011, ArXiv.

[7]  V. H. Nguyen Dimensional variance inequalities of Brascamp–Lieb type and a local approach to dimensional Prékopaʼs theorem , 2013, 1302.4589.

[8]  Matthieu Fradelizi,et al.  Sections of convex bodies through their centroid , 1997 .

[9]  A. Prékopa On logarithmic concave measures and functions , 1973 .

[10]  B. Klartag,et al.  Approximately gaussian marginals and the hyperplane conjecture , 2010, 1001.0875.

[11]  Volume of the polar of random sets and shadow systems , 2013, 1311.3690.

[12]  Arnaud Guillin,et al.  Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities , 2015, 1507.01086.

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  C. Borell Complements of Lyapunov's inequality , 1973 .

[15]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[16]  J. Wellner Limit theorems for the ratio of the empirical distribution function to the true distribution function , 1978 .

[17]  O. Guédon,et al.  Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures , 2010, 1011.0943.

[18]  S. Bobkov,et al.  Reverse Brunn–Minkowski and reverse entropy power inequalities for convex measures , 2011, 1109.5287.

[19]  Mokshay M. Madiman,et al.  Information concentration for convex measures , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[20]  S. Bobkov,et al.  Concentration of the information in data with log-concave distributions , 2010, 1012.5457.

[21]  Liyao Wang,et al.  Beyond the Entropy Power Inequality, via Rearrangements , 2013, IEEE Transactions on Information Theory.

[22]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[23]  鈴木 貴,et al.  Institute for Mathematics and Its Applications (IMA)について , 1985 .

[24]  Ronen Eldan,et al.  Thin Shell Implies Spectral Gap Up to Polylog via a Stochastic Localization Scheme , 2012, 1203.0893.

[25]  Liyao Wang Heat Capacity Bound, Energy Fluctuations and Convexity , 2014 .

[26]  V. Milman,et al.  Geometry of Log-concave Functions and Measures , 2005 .

[27]  B. Klartag A central limit theorem for convex sets , 2006, math/0605014.

[28]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[29]  Gábor Lugosi,et al.  Concentration Inequalities , 2008, COLT.

[30]  Ronen Eldan,et al.  Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates , 2013, 1306.3696.

[31]  Increasing functions and inverse Santaló inequality for unconditional functions , 2008 .

[32]  Van Hoang Nguyen Inégalités fonctionnelles et convexité , 2013 .

[33]  E. Lieb,et al.  Analysis, Second edition , 2001 .