Niobium flexure suspension design for high Q sapphire test masses for future gravitational wave detectors

We present results that demonstrate the likely advantages of niobium flexure suspensions for advanced gravitational wave detectors. It is shown that such suspensions can achieve high quality factor and allow test mass cooling to <10 K for 100 mW heat load.

[1]  Takayuki Tomaru,et al.  Cryogenic cooling of a sapphire mirror-suspension for interferometric gravitational wave detectors , 1998 .

[2]  F. Pobell,et al.  Matter and Methods at Low Temperatures , 1992 .

[3]  David Blair,et al.  Design and verification of low acoustic loss suspension systems for measuring the Q-factor of a gravitational wave detector test mass , 1998 .

[4]  Takayuki Tomaru,et al.  MECHANICAL QUALITY FACTOR OF A CRYOGENIC SAPPHIRE TEST MASS FOR GRAVITATIONAL WAVE DETECTORS , 1999 .

[5]  D. Blair,et al.  Ultrahigh Q pendulum suspensions for gravitational wave detectors , 1993 .

[6]  D. Blair,et al.  Interaction of a parametric transducer with a resonant bar gravitational radiation detector , 1990 .

[7]  V. Braginsky,et al.  Energy dissipation in the pendulum mode of the test mass suspension of a gravitational wave antenna , 1996 .

[8]  M. Fejer,et al.  Investigation of mechanical loss factors of some candidate materials for the test masses of gravitational wave detectors , 2000 .

[9]  Pendulum mode thermal noise in advanced interferometers: a comparison of fused silica fibers and ribbons in the presence of surface loss , 1999, gr-qc/9912057.

[10]  High-Q niobium membrane flexure pendulum , 2001 .

[11]  Yuri Levin Internal thermal noise in the LIGO test masses: A direct approach , 1998 .

[12]  Experimental study of thermal noise caused by an inhomogeneously distributed loss , 2001 .

[13]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.