InGaN-based solar cells: a wide solar spectrum harvesting technology for twenty-first century

Now a days solar photovoltaic (PV) is the promising technology to address global issues such as carbon-free electricity, shortage of fossil-fuel, global warming and low cost electricity. This would be successful while the conversion efficiency is improved and new technology is developed. One such technology to achieve over 40% efficiency is to stack III–V compound semiconductors to form multi-junctions. Indium Gallium Nitride (InxGa1−xN) is a highly emerging material with band gap ranging from 0.64 to 3.4 eV which has the ability to absorb nearly whole solar spectrum to increase the conversion efficiency copiously. Since past few years, InxGa1−xN material has been showing its potential for different optoelectronic and power electronic applications. This motivation is driving immense scientific interest to develop high-performance solar cells using InxGa1−xN material. This paper highlights the basic advantageous properties of InxGa1−xN materials, its growth technology and state-of-the-art application towards PV devices. The most important challenges that remain in realizing a high-efficiency InxGa1−xN PV device are also discussed here. Finally, conclusions are drawn about the potential and future aspects of InxGa1−xN material system towards terrestrial as well as space photovoltaic applications.

[1]  Ray-Hua Horng,et al.  Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells , 2009, IEEE Electron Device Letters.

[2]  Seong-Ran Jeon,et al.  InGaN-Based p–i–n Solar Cells with Graphene Electrodes , 2011 .

[3]  Jinn-Kong Sheu,et al.  Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers , 2010 .

[4]  S. Nakamura,et al.  Strain-induced polarization in wurtzite III-nitride semipolar layers , 2006 .

[5]  Katsutoshi Fujiwara,et al.  Polarity control of GaN grown on ZnO (0001¯) surfaces , 2006 .

[6]  Wladek Walukiewicz,et al.  Structure and electronic properties of InN and In-rich group III-nitride alloys , 2006 .

[7]  Baoping Zhang,et al.  Favourable photovoltaic effects in InGaN pin homojunction solar cell , 2009 .

[8]  K. Kheng,et al.  P-i-n InGaN homojunctions (10–40% In) synthesized by plasma-assisted molecular beam epitaxy with extended photoresponse to 600 nm , 2016, 1610.07413.

[9]  John C. C. Fan,et al.  Theoretical temperature dependence of solar cell parameters , 1986 .

[10]  Yen-Kuang Kuo,et al.  Numerical Study on the Influence of Piezoelectric Polarization on the Performance of p-on-n (0001)-Face GaN/InGaN p-i-n Solar Cells , 2011, IEEE Electron Device Letters.

[11]  D. Starikov,et al.  Fabrication and characterization of 2.3eV InGaN photovoltaic devices , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[12]  Eugene E. Haller,et al.  Unusual properties of the fundamental band gap of InN , 2002 .

[13]  James S. Speck,et al.  Effect of doping and polarization on carrier collection in InGaN quantum well solar cells , 2011 .

[14]  Ian T. Ferguson,et al.  EFFECT OF PHASE SEPARATION ON PERFORMANCE OF III-V NITRIDE SOLAR CELLS , 2007 .

[15]  Akio Yamamoto,et al.  MOVPE growth of high quality p-type InGaN with intermediate In compositions , 2011 .

[16]  James S. Speck,et al.  High internal and external quantum efficiency InGaN/GaN solar cells , 2011 .

[17]  Naoki Kobayashi,et al.  Minority carrier diffusion lengths in MOVPE-grown n- and p-InGaN and performance of AlGaN/InGaN/GaN double heterojunction bipolar transistors , 2007 .

[18]  Bor Wen Liou,et al.  Design and fabrication of InxGa1-xN/GaN solar cells with a multiple-quantum-well structure on SiCN/Si(111) substrates , 2011 .

[19]  Tao Wang,et al.  Efficiency enhancement of InGaN/GaN solar cells with nanostructures , 2014 .

[20]  Gerald B. Stringfellow,et al.  Solid phase immiscibility in GaInN , 1996 .

[21]  Lewis M. Fraas,et al.  Solar Cells and their Applications: Fraas/Solar Cells 2e , 2010 .

[22]  Keith W. J. Barnham,et al.  A new approach to high‐efficiency multi‐band‐gap solar cells , 1990 .

[23]  R. Kudrawiec,et al.  Growth and characterization of ingan for photovoltaic devices , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[24]  Aleksandra B. Djurišić,et al.  Straight and helical InGaN core–shell nanowires with a high In core content , 2006 .

[25]  R. Leonelli,et al.  Recombination dynamics in InGaN/GaN nanowire heterostructures on Si(111) , 2013, Nanotechnology.

[26]  Fernando Ponce,et al.  Microstructure and electronic properties of InGaN alloys , 2003 .

[27]  Aurelien J. F. David,et al.  Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes , 2010 .

[28]  Takashi Matsuoka,et al.  Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy , 1991 .

[29]  Stephen J. Pearton,et al.  GaN and related materials II , 2000 .

[30]  Yu Wen,et al.  Enhanced Carrier Escape in MSQW Solar Cell and Its Impact on Photovoltaics Performance , 2011, IEEE Journal of Photovoltaics.

[31]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[32]  Hao-Chung Kuo,et al.  Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors , 2013 .

[33]  浜川 圭弘 Thin-film solar cells : next generation photovoltaics and its applications , 2004 .

[34]  Jacek A. Majewski,et al.  Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .

[35]  T. Boufaden,et al.  Minority carrier diffusion lengths and optical self‐absorption coefficient in undoped GaN , 2003 .

[36]  Jinmin Li,et al.  Photovoltaic effects in InGaN structures with p–n junctions , 2007 .

[37]  Nicolas Grandjean,et al.  Optical investigations and absorption coefficient determination of InGaN/GaN quantum wells , 2002 .

[38]  Motoaki Iwaya,et al.  GaInN-Based Solar Cells Using Strained-Layer GaInN/GaInN Superlattice Active Layer on a Freestanding GaN Substrate , 2011 .

[39]  张建华,et al.  Hybrid functional calculations on the band gap bowing parameters of In_xGa_(1-x)N , 2016 .

[40]  Oliver Brandt,et al.  Recombination dynamics in GaN , 1998 .

[41]  S. Kurtz,et al.  Design, Growth, Fabrication and Characterization of High-Band Gap InGaN/GaN Solar Cells , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[42]  David Holec,et al.  Equilibrium critical thickness for misfit dislocations in III-nitrides , 2008 .

[43]  O. Jani,et al.  Development of wide-band gap InGaN solar cells for high-efficiency photovoltaics , 2008 .

[44]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[45]  Nathan Newman,et al.  Effects of stress on phase separation in InxGa1−xN/GaN multiple quantum-wells , 2011 .

[46]  Edward Yi Chang,et al.  Fabrication and characterization of n-In0.4Ga0.6N/p-Si solar cell , 2012 .

[47]  Lester F. Eastman,et al.  Growth, fabrication, and characterization of InGaN solar cells , 2008 .

[48]  C. Guillén,et al.  TCO/metal/TCO structures for energy and flexible electronics , 2011 .

[49]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[50]  A. D. Vos,et al.  Endoreversible thermodynamics of solar energy conversion , 1992 .

[51]  Claudia Felser,et al.  On the influence of bandstructure on transport properties of magnetic tunnel junctions with Co2Mn1−xFexSi single and multilayer electrode , 2008 .

[52]  Chia-Lung Tsai,et al.  Substrate-free large gap InGaN solar cells with bottom reflector , 2010 .

[53]  George T. Wang,et al.  Strain influenced indium composition distribution in GaN/InGaN core-shell nanowires , 2010 .

[54]  Rabeb Belghouthi,et al.  Analytical modeling of polarization effects in InGaN double hetero-junction p-i-n solar cells , 2016 .

[55]  David Vanderbilt,et al.  Theory of Polarization: A Modern Approach , 2007 .

[56]  Takeshi Kuboyama,et al.  Properties of Ga1-xInxN Films Prepared by MOVPE , 1989 .

[57]  K. Thonke,et al.  Polarization fields of III-nitrides grown in different crystal orientations , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[58]  M. Jamil,et al.  Design and Realization of Wide-Band-Gap ($\sim$ 2.67 eV) InGaN p-n Junction Solar Cell , 2010, IEEE Electron Device Letters.

[59]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[60]  Wladek Walukiewicz,et al.  Band gaps of InN and group III nitride alloys , 2003 .

[61]  Yoshiki Saito,et al.  RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys , 2003 .

[62]  Hao-Chung Kuo,et al.  Projected Efficiency of Polarization-Matched , 2013 .

[63]  C. Bougerol,et al.  Investigation of Photovoltaic Properties of Single Core-Shell GaN/InGaN Wires. , 2015, ACS applied materials & interfaces.

[64]  Yong-Seok Choi,et al.  n‐ZnO/i‐InGaN/p‐GaN heterostructure for solar cell application , 2013 .

[65]  Debdeep Jena,et al.  Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications , 2007 .

[66]  D. Law,et al.  40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells , 2007 .

[67]  Robert W. Martin,et al.  Origin of Luminescence from InGaN Diodes , 1999 .

[68]  Christiana B. Honsberg,et al.  III-Nitride Double-Heterojunction Solar Cells With High In-Content InGaN Absorbing Layers: Comparison of Large-Area and Small-Area Devices , 2016, IEEE Journal of Photovoltaics.

[69]  Hiroshi Harima,et al.  Optical bandgap energy of wurtzite InN , 2002 .

[70]  C. X. Ren,et al.  Polarisation fields in III-nitrides: Effects and control , 2016 .

[71]  Gyu-Chul Yi Kunook Chung Optoelectronic Devices Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for , 2014 .

[72]  W. Walukiewicz,et al.  Modeling of InGaN/Si tandem solar cells , 2008 .

[73]  Li-Wei Tu,et al.  Conversion Efficiency Improvement of InGaN/GaN Multiple-Quantum-Well Solar Cells With Ex Situ AlN Nucleation Layer , 2015, IEEE Transactions on Electron Devices.

[74]  Oliver Brandt,et al.  Direct experimental determination of the spontaneous polarization of GaN , 2012, 1201.4294.

[75]  Silke Christiansen,et al.  Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire , 2014 .

[76]  Oliver Ambacher,et al.  Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures , 2002 .

[77]  Martin Eickhoff,et al.  GaNのモット転移を超えたGeドーピング | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2016 .

[78]  Yoichi Kawakami,et al.  Nanoscopic recombination processes in InGaN/GaN quantum wells emitting violet, blue, and green spectra , 2008 .

[79]  W. Alan Doolittle,et al.  Effect of III‐nitride polarization on VOC in p–i–n and MQW solar cells , 2011 .

[80]  Sebastian Metzner,et al.  Determination of carrier diffusion length in GaN , 2015 .

[81]  Yen-Kuang Kuo,et al.  Numerical Investigation of High-Efficiency InGaN-Based Multijunction Solar Cell , 2013, IEEE Transactions on Electron Devices.

[82]  P. Bhattacharya,et al.  Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. , 2010, Nano letters.

[83]  Zetian Mi,et al.  III-Nitride nanowire optoelectronics , 2015 .

[84]  Tae Yeon Seong,et al.  Improved efficiency of InGaN/GaN-based multiple quantum well solar cells by reducing contact resistance , 2012 .

[85]  Wu Shun-Qing,et al.  Hybrid functional calculations on the band gap bowing parameters of In x Ga 1- x N , 2016 .

[86]  Min-Hung Lee,et al.  Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate , 2011 .

[87]  Motoaki Iwaya,et al.  GaInN‐based solar cells using GaInN/GaInN superlattices , 2011 .

[88]  Alexandros Georgakilas,et al.  InGaN(0001) alloys grown in the entire composition range by plasma assisted molecular beam epitaxy , 2006 .

[89]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[90]  Han Cheng Lee,et al.  Study of Electrical Characteristics of GaN-Based Photovoltaics With Graded In$_{x}$ Ga$_{1-{x}}$ N Absorption Layer , 2011, IEEE Photonics Technology Letters.

[91]  Yen-Kuang Kuo,et al.  Simulation of N-face InGaN-based p-i-n solar cells , 2012 .

[92]  Xiaohua Ma,et al.  An InGaN-Based Solar Cell Including Dual InGaN/GaN Multiple Quantum Wells , 2016, IEEE Photonics Technology Letters.

[93]  David Holec,et al.  Critical thickness calculations for InGaN/GaN , 2007 .

[94]  Lewis Fraas Larry Partain Solar Cells and Their Applications , 2010 .

[95]  Tae Yeon Seong,et al.  Reduction of Threading Dislocations in InGaN/GaN Double Heterostructure through the Introduction of Low-Temperature GaN Intermediate Layer , 2002 .

[96]  L. Sang,et al.  A Multilevel Intermediate‐Band Solar Cell by InGaN/GaN Quantum Dots with a Strain‐Modulated Structure , 2014, Advanced materials.

[97]  Eugene E. Haller,et al.  Small band gap bowing in In1−xGaxN alloys , 2002 .

[98]  Wladek Walukiewicz,et al.  Photovoltaic action from InxGa1‐xN p‐n junctions with x > 0.2 grown on silicon , 2011 .

[99]  James S. Speck,et al.  High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm , 2011 .

[100]  Md. Rafiqul Islam,et al.  Recent advances in InN‐based solar cells: status and challenges in InGaN and InAlN solar cells , 2010 .

[101]  James S. Speck,et al.  High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates , 2013 .

[102]  Frank Fuchs,et al.  Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations , 2009 .

[103]  Paul C. Schmitz,et al.  Solar Power System Design for the Solar Probe+ Mission , 2008 .

[104]  Ian T. Ferguson,et al.  Design and characterization of GaN∕InGaN solar cells , 2007 .

[105]  James S. Speck,et al.  High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy , 2011 .

[106]  Baoping Zhang,et al.  Preparation and properties of Ni/InGaN/GaN Schottky barrier photovoltaic cells , 2011 .

[107]  Hiroshi Harima,et al.  Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap. , 2002 .

[108]  Ian Ferguson,et al.  Optimization of GaN window layer for InGaN solar cells using polarization effect , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[109]  S. Wirth,et al.  Pressure-induced successive structural transitions and high-pressure tetragonal phase of Fe1.08Te , 2012 .

[110]  Colin J. Humphreys,et al.  Misfit dislocations in In‐rich InGaN/GaN quantum well structures , 2006 .

[111]  W. Alan Doolittle,et al.  Simulations, Practical Limitations, and Novel Growth Technology for InGaN-Based Solar Cells , 2014, IEEE Journal of Photovoltaics.

[112]  Tai-Yuan Lin,et al.  Direct evidence of nanocluster-induced luminescence in InGaN epifilms , 2005 .

[113]  Theodore D. Moustakas,et al.  Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy , 1998 .

[114]  Eugene E. Haller,et al.  Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system , 2003 .

[115]  Chih-Chung Yang,et al.  Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells , 2000 .

[116]  Wei-Cheng Lien,et al.  Solar-Blind Photodetectors for Harsh Electronics , 2013, Scientific Reports.

[117]  Liann-Be Chang,et al.  Temperature dependences of InxGa1−xN multiple quantum well solar cells , 2009 .

[118]  P. Yu,et al.  Conversion Efficiency Enhancement of GaN/In$_{0.11}$Ga$_{0.89}$N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process , 2011, IEEE Photonics Technology Letters.

[119]  Jr-Hau He,et al.  Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells , 2010 .

[120]  Hiroshi Kurita,et al.  Superior radiation-resistant properties of InGaP/GaAs tandem solar cells , 1997 .

[121]  Peter M. Asbeck,et al.  Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures , 1999 .

[122]  Rajendra Dahal,et al.  InGaN/GaN multiple quantum well solar cells with long operating wavelengths , 2009 .

[123]  Yen-Kuang Kuo,et al.  Polarization Effect on the Photovoltaic Characteristics of $\hbox{Al}_{0.14}\hbox{Ga}_{0.86}\hbox{N}/\hbox{In}_{0.21}\hbox{Ga}_{0.79}\hbox{N}$ Superlattice Solar Cells , 2012, IEEE Electron Device Letters.

[124]  Motoaki Iwaya,et al.  Realization of Nitride-Based Solar Cell on Freestanding GaN Substrate , 2010 .

[125]  Baoping Zhang,et al.  Fabrication and characterization of InGaN p-i-n homojunction solar cell , 2009 .

[126]  Hao-Chung Kuo,et al.  Projected Efficiency of Polarization-Matched p-In $_{\bm x}$ Ga $_{\bm {1-x}}$ N/i-In $_{\bm y}$ Ga $_{\bm{1-y}}$ N/n-GaN Double Heterojunction Solar Cells , 2013 .

[127]  Feng Gao,et al.  The effect of dislocations on the efficiency of InGaN/GaN solar cells , 2013 .

[128]  Yoshio Honda,et al.  Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells , 2016 .

[129]  Fong Kwong Yam,et al.  InGaN: An overview of the growth kinetics, physical properties and emission mechanisms , 2008 .

[130]  Ahmed S. Bouazzi,et al.  Theoretical possibilities of InxGa1-xN tandem PV structures , 2005 .

[131]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[132]  Ray-Hua Horng,et al.  High-quality InGaN∕GaN heterojunctions and their photovoltaic effects , 2008 .

[133]  Joshua M. Pearce,et al.  Progress in Indium Gallium Nitride Materials for Solar Photovoltaic Energy Conversion , 2013, Metallurgical and Materials Transactions A.

[134]  Z. Q. Li,et al.  Effects of polarization charge on the photovoltaic properties of InGaN solar cells , 2011 .

[135]  M. Green Third generation photovoltaics : advanced solar energy conversion , 2006 .

[136]  Joeri Rogelj,et al.  IPCC, 2013: Summary for Policymakers , 2013 .

[137]  Bozhi Tian,et al.  Coaxial Group Iii#nitride Nanowire Photovoltaics , 2009 .

[138]  Mutlu Kundakçı,et al.  InGaN thin film deposition on Si(100) and glass substrates by termionic vacuum arc , 2016 .

[139]  Jr-Hau He,et al.  Harsh photovoltaics using InGaN/GaN multiple quantum well schemes , 2015 .

[140]  M. Islam,et al.  Mg-doping and n+-p junction formation in MOVPE-grown InxGa1-xN (x∼0.4) , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[141]  Yoshiki Naoi,et al.  Role of Dislocation in InGaN Phase Separation , 1998 .

[142]  W. Walukiewicz,et al.  Characterization of MG-doped InGaN and InALN alloys grown by MBE for solar applications , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[143]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[144]  Yen-Kuang Kuo,et al.  Simulation of High-Efficiency GaN/InGaN p-i-n Solar Cell With Suppressed Polarization and Barrier Effects , 2013, IEEE Journal of Quantum Electronics.

[145]  Akio Yamamoto,et al.  InGaN Solar Cells: Present State of the Art and Important Challenges , 2012, IEEE Journal of Photovoltaics.

[146]  Jinn-Kong Sheu,et al.  Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers , 2009, IEEE Electron Device Letters.

[147]  Jing Li,et al.  InGaN/GaN multiple quantum well concentrator solar cells , 2010 .

[148]  M. Reiche,et al.  Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes , 2000, Nature.

[149]  Yu Wang,et al.  Investigation of InGaN p-i-n Homojunction and Heterojunction Solar Cells , 2013, IEEE Photonics Technology Letters.