From Tarski to Hilbert

In this paper, we report on the formal proof that Hilbert’s axiom system can be derived from Tarski’s system. For this purpose we mechanized the proofs of the first twelve chapters of Schwabauser, Szmielew and Tarski’s book: Metamathematische Methoden in der Geometrie. The proofs are checked formally within classical logic using the Coq proof assistant. The goal of this development is to provide clear foundations for other formalizations of geometry and implementations of decision procedures.

[1]  Alfred Tarski,et al.  Tarski's System of Geometry , 1999, Bulletin of Symbolic Logic.

[2]  Frédérique Guilhot,et al.  Formalisation en Coq et visualisation d'un cours de géométrie pour le lycée , 2005, Tech. Sci. Informatiques.

[3]  Pedro Quaresma,et al.  The Area Method , 2010, Journal of Automated Reasoning.

[4]  Matthieu Sozeau,et al.  First-Class Type Classes , 2008, TPHOLs.

[5]  Pascal Schreck,et al.  Higher-Order Intuitionistic Formalization and Proofs in Hilbert's Elementary Geometry , 2000, Automated Deduction in Geometry.

[6]  Nicolas Magaud,et al.  Designing and proving correct a convex hull algorithm with hypermaps in Coq , 2012, Comput. Geom..

[7]  A. Tarski,et al.  Metamathematische Methoden in der Geometrie , 1983 .

[8]  Dongming Wang,et al.  Automated Deduction in Geometry , 1996, Lecture Notes in Computer Science.

[9]  Julien Narboux,et al.  A Coq-Based Library for Interactive and Automated Theorem Proving in Plane Geometry , 2011, ICCSA.

[10]  P. Scott Mechanising Hilbert's Foundations of Geometry in Isabelle , 2008 .

[11]  Jeremy Avigad,et al.  A FORMAL SYSTEM FOR EUCLID’S ELEMENTS , 2008, The Review of Symbolic Logic.

[12]  Phil Scott,et al.  An Investigation of Hilbert's Implicit Reasoning through Proof Discovery in Idle-Time , 2010, Automated Deduction in Geometry.

[13]  Jacques D. Fleuriot,et al.  Formalizing Hilbert's Grundlagen in Isabelle/Isar , 2003, TPHOLs.

[14]  David Aspinall,et al.  Formalising Java's Data Race Free Guarantee , 2007, TPHOLs.

[15]  Pascal Schreck,et al.  Formalizing Desargues' theorem in Coq using ranks , 2009, SAC '09.

[16]  Brian Campbell,et al.  An Executable Semantics for CompCert C , 2012, CPP.

[17]  David Taniar,et al.  Computational Science and Its Applications - ICCSA 2011 , 2011, Lecture Notes in Computer Science.

[18]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[19]  David Pichardie,et al.  Formalizing Convex Hull Algorithms , 2001, TPHOLs.

[20]  Tobias Nipkow,et al.  The Isabelle Reference Manual , 2007 .

[21]  Julien Narboux,et al.  A Decision Procedure for Geometry in Coq , 2004, TPHOLs.

[22]  Pascal Schreck,et al.  Formalization of Wu's Simple Method in Coq , 2011, CPP.

[23]  Art Quaife,et al.  Automated development of Tarski's geometry , 1989, Journal of Automated Reasoning.

[24]  Julien Narboux,et al.  Mechanical Theorem Proving in Tarski's Geometry , 2006, Automated Deduction in Geometry.

[25]  Julien Narboux Toward the use of a proof assistant to teach mathematics , 2005 .

[26]  Julien Narboux Formalisation et automatisation du raisonnement géométrique en Coq. (Formalisation and automation of geometric reasoning within Coq) , 2006 .