Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems
暂无分享,去创建一个
José Rui Figueira | George Mavrotas | Alexandros Antoniadis | J. Figueira | G. Mavrotas | A. Antoniadis
[1] David Pisinger,et al. Algorithms for Knapsack Problems , 1995 .
[2] P. Pardalos,et al. Pareto optimality, game theory and equilibria , 2008 .
[3] Jacques Teghem,et al. Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..
[4] Hans Kellerer,et al. Knapsack problems , 2004 .
[5] José Rui Figueira,et al. Solving the bi-objective multi-dimensional knapsack problem exploiting the concept of core , 2009, Appl. Math. Comput..
[6] Egon Balas,et al. An Algorithm for Large Zero-One Knapsack Problems , 1980, Oper. Res..
[7] Shabnam Razavyan,et al. The identification of nondominated and efficient paths on a network , 2005, Appl. Math. Comput..
[8] S. Martello,et al. Algorithms for Knapsack Problems , 1987 .
[9] Ghasem Tohidi,et al. A method for generating all efficient solutions of 0-1 multi-objective linear programming problem , 2005, Appl. Math. Comput..
[10] George Mavrotas,et al. Multi-criteria branch and bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming , 2005, Appl. Math. Comput..
[11] Carlos Gomes da Silva,et al. An exact method for the bi-criteria { 0 , 1 }-knapsack problem based on functions specialization , 2005 .
[12] George Mavrotas,et al. A branch and bound algorithm for mixed zero-one multiple objective linear programming , 1998, Eur. J. Oper. Res..
[13] David Kendrick,et al. GAMS, a user's guide , 1988, SGNM.
[14] Panos M. Pardalos,et al. A survey of recent developments in multiobjective optimization , 2007, Ann. Oper. Res..
[15] José Rui Figueira,et al. Core problems in bi-criteria {0, 1}-knapsack problems , 2008, Comput. Oper. Res..
[16] Arnaud Fréville,et al. The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..
[17] Marco Laumanns,et al. An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..
[18] Günther R. Raidl,et al. The Core Concept for the Multidimensional Knapsack Problem , 2006, EvoCOP.
[19] S. Martello,et al. A New Algorithm for the 0-1 Knapsack Problem , 1988 .
[20] John E. Beasley,et al. A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.
[21] Marc Despontin,et al. Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .
[22] Heather Fry,et al. A user’s guide , 2003 .
[23] José Rui Figueira,et al. A Scatter Search Method for the Bi-Criteria Multi-dimensional {0,1}-Knapsack Problem using Surrogate Relaxation , 2004, J. Math. Model. Algorithms.
[24] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[25] Fariborz Jolai,et al. Exact algorithm for bi-objective 0-1 knapsack problem , 2007, Appl. Math. Comput..