Automated Kernel Smoothing of Dependent Data by Using Time Series Cross‐Validation

[1]  Jeffrey D. Hart,et al.  Kernel Regression When the Boundary Region is Large, with an Application to Testing the Adequacy of Polynomial Models , 1992 .

[2]  T. Gasser,et al.  Choice of bandwidth for kernel regression when residuals are correlated , 1992 .

[3]  R. Kohn,et al.  Nonparametric spline regression with autoregressive moving average errors , 1992 .

[4]  W. Härdle,et al.  Kernel regression smoothing of time series , 1992 .

[5]  J. Marron,et al.  Comparison of Two Bandwidth Selectors with Dependent Errors , 1991 .

[6]  Hans-Georg Müller,et al.  Smooth optimum kernel estimators near endpoints , 1991 .

[7]  J. Hart Kernel regression estimation with time series errors , 1991 .

[8]  Peter Hall,et al.  Nonparametric regression with long-range dependence , 1990 .

[9]  Scott L. Zeger,et al.  A Frequency Domain Selection Criterion for Regression with Autocorrelated Errors , 1990 .

[10]  Naomi Altman,et al.  Kernel Smoothing of Data with Correlated Errors , 1990 .

[11]  P. Vieu,et al.  Data-Driven Bandwidth Choice for Density Estimation Based on Dependent Data , 1990 .

[12]  Shean-Tsong Chiu,et al.  Bandwidth selection for kernel estimate with correlated noise , 1989 .

[13]  M. Hutchinson,et al.  ON SPLINE SMOOTHING WITH AUTOCORRELATED ERRORS , 1989 .

[14]  D. W. Scott,et al.  Biased and Unbiased Cross-Validation in Density Estimation , 1987 .

[15]  Jeffrey D. Hart,et al.  Efficiency of a Kernel Density Estimator under an Autoregressive Dependence Model , 1984 .

[16]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[17]  T. W. Anderson,et al.  Statistical analysis of time series , 1972 .