On the Ramsey-Turán numbers of graphs and hypergraphs

Let t be an integer, f(n) a function, and H a graph. Define the t-Ramsey-Turán number of H, RTt(n,H, f(n)), to be the maximum number of edges in an n-vertex, H-free graph G with αt(G) ≤ f(n), where αt(G) is the maximum number of vertices in a Kt-free induced subgraph of G. Erdős, Hajnal, Simonovits, Sós and Szemerédi [6] posed several open questions about RTt(n,Ks, o(n)), among them finding the minimum ℓ such that RTt(n,Kt+ℓ, o(n)) = Ω(n2), where it is easy to see that RTt(n,Kt+1, o(n)) = o(n2). In this paper, we answer this question by proving that RTt(n,Kt+2, o(n)) = Ω(n2); our constructions also imply several results on the Ramsey-Turán numbers of hypergraphs.

[1]  Miklós Simonovits,et al.  Ramsey-Turán theory , 2001, Discret. Math..

[2]  Benny Sudakov,et al.  Dependent random choice , 2009, Random Struct. Algorithms.

[3]  P. Erdös On the structure of linear graphs , 1946 .

[4]  Endre Szemerédi,et al.  More results on Ramsey—Turán type problems , 1983, Comb..

[5]  David Conlon,et al.  Ramsey numbers of sparse hypergraphs , 2007, Random Struct. Algorithms.

[6]  Vojtech Rödl,et al.  On graphs with small Ramsey numbers , 2001, J. Graph Theory.

[7]  Vojtech Rödl,et al.  Note on a Ramsey-Turán type problem , 1985, Graphs Comb..

[8]  Béla Bollobás,et al.  On a Ramsey-Turán type problem , 1976, Journal of combinatorial theory. Series B (Print).

[9]  Oleg Pikhurko Exact computation of the hypergraph Turán function for expanded complete 2-graphs , 2013, J. Comb. Theory, Ser. B.

[10]  V. Rödl,et al.  On graphs with small Ramsey numbers , 2001 .

[11]  Miklós Simonovits,et al.  Turán-Ramsey Theorems and Kp-Independence Numbers , 1994, Combinatorics, Probability and Computing.

[12]  Paul Erdös,et al.  The Construction of Certain Graphs , 1966, Canadian Journal of Mathematics.

[13]  Benny Sudakov Afew remarks on Ramsey-Turan-type problems , 2003 .

[14]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[15]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[16]  Dhruv Mubayi,et al.  A hypergraph extension of Turán's theorem , 2006, J. Comb. Theory, Ser. B.

[17]  Tibor Rado The Isoperimetric Inequality on the Sphere , 1935 .