Unified Fingerprinting/Ranging Localization for e-Healthcare Systems

Indoor localization constitutes one of the main pillars for the provision of context-aware services in e-Healthcare systems. Fingerprinting and ranging have traditionally been placed facing each other to meet the localization requirements. However, accurate fingerprinting may worth the exhaustive calibration effort in some critical areas while easy-to-deploy ranging can provide adequate accuracy for certain non-critical spaces. In this paper, we propose a framework and algorithm for seamless integration of both systems from the Bayesian perspective. We assessed the proposed framework with conventional WiFi devices in comparison to conventional implementations. The presented techniques exhibit a remarkable accuracy improvement while they avoid computationally exhaustive algorithms that impede real-time operation.