Tests of Lorentz Symmetry in the Gravitational Sector
暂无分享,去创建一个
Christophe Le Poncin-Lafitte | Christine Guerlin | Quentin G. Bailey | C. L. Poncin-lafitte | A. Hees | C. Guerlin | Q. Bailey | A. Bourgoin | H. P. Bars | Aur'elien Hees | Adrien Bourgoin | H'elene Pihan-Le Bars | C. L. Poncin-Lafitte
[1] V. Kostelecký,et al. CPT and strings , 1991 .
[2] Y. Bonder. Lorentz violation in the gravity sector: The t puzzle , 2015, 1504.03636.
[3] Kazuhiro Yamamoto,et al. Constraint on modified dispersion relations for gravitational waves from gravitational Cherenkov radiation , 2015, 1509.00610.
[4] S. Reynaud,et al. Post-Einsteinian tests of linearized gravitation , 2005, gr-qc/0502007.
[5] D. Lorimer. Binary and Millisecond Pulsars , 1998, Living reviews in relativity.
[6] A. Kostelecký,et al. Signals for Lorentz violation in post-Newtonian gravity , 2006, gr-qc/0603030.
[7] Quentin G. Bailey,et al. Light-bending tests of Lorentz invariance , 2011, 1108.2071.
[8] Towards a 1% measurement of the Lense-Thirring effect with LARES? , 2008, 0802.2031.
[9] J. Tasson,et al. Matter-Sector Lorentz Violation in Binary Pulsars , 2015, 1510.03798.
[10] D. Budker,et al. Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. , 2013, Physical review letters.
[11] S. Ransom,et al. HIGH-PRECISION TIMING OF FIVE MILLISECOND PULSARS: SPACE VELOCITIES, BINARY EVOLUTION, AND EQUIVALENCE PRINCIPLES , 2011, 1109.5638.
[12] E. C. Pavlis,et al. A confirmation of the general relativistic prediction of the Lense–Thirring effect , 2004, Nature.
[13] A. Fienga,et al. INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions , 2009, 0906.2860.
[14] C. Le Poncin-Lafitte,et al. Relativistic formulation of coordinate light time, Doppler and astrometric observables up to the second post-Minkowskian order , 2014, 1401.7622.
[15] P. K. Seidelmann,et al. The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement , 2003, astro-ph/0303376.
[16] A. Peters,et al. First gravity measurements using the mobile atom interferometer GAIN , 2013 .
[17] L. Shao,et al. Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars. , 2014, Physical review letters.
[18] J. Ulrichs,et al. The cosmic-ray energy spectrum above 1017 eV , 1986 .
[19] Kazuhiro Yamamoto,et al. Constraints on general second-order scalar-tensor models from gravitational Cherenkov radiation , 2011, 1112.4284.
[20] Robert C Myers,et al. Ultraviolet modifications of dispersion relations in effective field theory. , 2003, Physical review letters.
[21] B. Famaey,et al. Combined Solar system and rotation curve constraints on MOND , 2015, 1510.01369.
[22] David Mattingly,et al. Modern Tests of Lorentz Invariance , 2005, Living reviews in relativity.
[23] E. Pitjeva,et al. Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft , 2013, 1306.3043.
[24] L. Iorio. Orbital effects of Lorentz-violating standard model extension gravitomagnetism around a static body: a sensitivity analysis , 2012, 1203.1859.
[25] Sami W. Asmar,et al. High‐resolution lunar gravity fields from the GRAIL Primary and Extended Missions , 2014 .
[26] G. Moore,et al. Constraining the New Aether: gravitational Cherenkov radiation , 2005, hep-ph/0505211.
[27] W. Folkner,et al. The Planetary and Lunar Ephemeris DE 421 , 2009 .
[28] Long range gravity tests and the Pioneer anomaly , 2006, gr-qc/0610160.
[29] P. G. Isar,et al. SEARCHES FOR ANISOTROPIES IN THE ARRIVAL DIRECTIONS OF THE HIGHEST ENERGY COSMIC RAYS DETECTED BY THE PIERRE AUGER OBSERVATORY , 2015 .
[30] Kenneth Nordtvedt,et al. EQUIVALENCE PRINCIPLE FOR MASSIVE BODIES. II. THEORY. , 1968 .
[31] A. Fienga,et al. Gravity tests with INPOP planetary ephemerides , 2009, Proceedings of the International Astronomical Union.
[32] Roberto Peron,et al. Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-newtonian gravity. , 2010, Physical review letters.
[33] H. Müller,et al. Equivalence principle and gravitational redshift. , 2011, Physical review letters.
[34] Cosmology and the standard model , 2002, hep-th/0210202.
[35] L. Mervart,et al. Status of GRAIL Gravity Field Determination Using the Celestial Mechanics Approach , 2014 .
[36] N. Wex. Testing Relativistic Gravity with Radio Pulsars , 2014, 1402.5594.
[37] James G. Williams,et al. Progress in lunar laser ranging tests of relativistic gravity. , 2006, Physical review letters.
[38] P. M. Bell. The search for non‐Newtonian G , 1981 .
[39] Slava G. Turyshev,et al. LUNAR LASER RANGING TESTS OF THE EQUIVALENCE PRINCIPLE WITH THE EARTH AND MOON , 2005 .
[40] P. Tortora,et al. A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.
[41] J. W. Elbert,et al. Detection of a Cosmic Ray with Measured Energy Well beyond the Expected Spectral Cutoff due to Cosmic Microwave Radiation , 1994 .
[42] S. Lambert,et al. Improved determination of γ by VLBI , 2011 .
[43] T. Damour,et al. Nonperturbative strong-field effects in tensor-scalar theories of gravitation. , 1993, Physical review letters.
[44] Q. Bailey. Time delay and Doppler tests of the Lorentz symmetry of gravity , 2009, 0904.0278.
[45] George E. Pugh,et al. PROPOSAL FOR A SATELLITE TEST OF THE CORIOLIS PREDICTIONS OF GENERAL RELATIVITY , 2003 .
[46] J. H. J. de Bruijne,et al. Science performance of Gaia, ESA’s space-astrometry mission , 2012, 1201.3238.
[47] M. Zuber,et al. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters , 2011 .
[48] R. N. Manchester,et al. Tests of General Relativity from Timing the Double Pulsar , 2006, Science.
[49] A. Bennett,et al. TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .
[50] F. Pretorius,et al. Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226 , 2016, 1603.08955.
[51] N. Yunes,et al. Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations , 2013, 1311.7144.
[52] M.Hayakawa. Perturbative analysis on infrared aspects of noncommutative QED on R^4 , 1999, hep-th/9912094.
[53] Sébastien Merlet,et al. Micro-gravity investigations for the LNE watt balance project , 2008 .
[54] Alan Kostelecky,et al. Lorentz-Violating Extension of the Standard Model , 1998 .
[55] C. Hernaski. Quantization and stability of bumblebee electrodynamics , 2014, 1411.5321.
[56] V. Skavysh,et al. SEARCH FOR LORENTZ VIOLATION IN A SHORT-RANGE GRAVITY EXPERIMENT , 2010, 1008.3670.
[57] C. Salomon,et al. Atomic clock ensemble in space , 2011 .
[58] J. Tasson,et al. Constraints on torsion from bounds on lorentz violation. , 2007, Physical review letters.
[59] G. Amelino-Camelia. Quantum-Spacetime Phenomenology , 2008, Living reviews in relativity.
[60] S. Reynaud,et al. Radioscience simulations in general relativity and in alternative theories of gravity , 2011, 1105.5927.
[61] Samuel,et al. Spontaneous breaking of Lorentz symmetry in string theory. , 1989, Physical review. D, Particles and fields.
[62] Pierre Touboul,et al. The MICROSCOPE experiment, ready for the in-orbit test of the equivalence principle , 2012 .
[63] A. Fienga,et al. INPOP06: a new numerical planetary ephemeris , 2008 .
[64] E. Standish,et al. CHAPTER 8 : Orbital Ephemerides of the Sun , Moon , and Planets , 2007 .
[65] T. Damour,et al. General relativistic celestial mechanics of binary systems. II. The post-newtonian timing formula , 1986 .
[66] M. Hayakawa. Perturbative analysis on infrared aspects of noncommutative QED on R4 , 2000 .
[67] R. Manchester,et al. tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.
[68] Zhongkun Hu,et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter , 2013 .
[69] Clifford M. Will,et al. The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.
[70] Fischbach,et al. Reanalysis of the Eoumltvös experiment. , 1986, Physical review letters.
[71] R. Warburton,et al. Search for evidence of a preferred reference frame. [gravitational anisotropic effect on earth tides] , 1976 .
[72] E. Adelberger,et al. Preferred-Frame and CP-Violation Tests with Polarized Electrons , 2007, 0808.2673.
[73] A. Kostelecký,et al. Signals for Lorentz violation in electrodynamics , 2002, hep-ph/0205211.
[74] Leonard I. Schiff,et al. Possible New Experimental Test of General Relativity Theory , 1960 .
[75] J. Williams,et al. Lunar Laser Ranging: A Continuing Legacy of the Apollo Program , 1994, Science.
[76] J. H. Taylor,et al. Measurements of general relativistic effects in the binary pulsar PSR1913 + 16 , 1979, Nature.
[77] M. Kramer,et al. A characteristic observable signature of preferred-frame effects in relativistic binary pulsars , 2007, 0706.2382.
[78] K. Thorne,et al. Theoretical frameworks for testing relativistic gravity: A review , 1971 .
[79] K. Nordtvedt. Equivalence Principle for Massive Bodies. I. Phenomenology , 1968 .
[80] P. Wolf,et al. Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6 , 2015, 1508.06159.
[81] S. Asmar,et al. PROBING SPACE–TIME IN THE SOLAR SYSTEM: FROM CASSINI TO BEPICOLOMBO , 2007 .
[82] World function and time transfer: general post-Minkowskian expansions , 2004, gr-qc/0403094.
[83] George F. Smoot,et al. A Brief History of Gravitational Waves , 2016 .
[84] Marc-Thierry Jaekel,et al. GRAVITY TESTS IN THE SOLAR SYSTEM AND THE PIONEER ANOMALY , 2004 .
[85] E. Pitjeva. High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical Constants , 2005 .
[86] J. Overduin,et al. Limits on violations of Lorentz symmetry from Gravity Probe B , 2013, 1309.6399.
[87] S. Chiow,et al. Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics , 2009, 0905.1929.
[88] S. Bertone,et al. Light propagation in the field of a moving axisymmetric body: Theory and applications to the Juno mission , 2014, 1406.6600.
[89] K. Nordtvedt. Anisotropic parametrized post-Newtonian gravitational metric field , 1976 .
[90] Lorenzo Iorio,et al. An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging , 2008, 0809.1373.
[91] Slava G. Turyshev,et al. Experimental tests of general relativity: recent progress and future directions , 2008, 0806.1731.
[92] The Ligo Scientific Collaboration,et al. Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.
[93] String theoretic bounds on Lorentz violating warped compactification , 2003, hep-th/0301189.
[94] N. Wex,et al. New tests of local Lorentz invariance of gravity with small-eccentricity binary pulsars , 2012, 1209.4503.
[95] Mario Vietri,et al. KHZ QUASIPERIODIC OSCILLATIONS IN LOW-MASS X-RAY BINARIES AS PROBES OF GENERAL RELATIVITY IN THE STRONG-FIELD REGIME , 1998 .
[96] CPT Violation and decoherence in quantum gravity , 2009, 0904.0606.
[97] S. Reynaud,et al. Simulations of Solar System Observations in Alternative Theories of Gravity , 2013, 1301.1658.
[98] R. Hulse,et al. Further observations of the binary pulsar PSR 1913+16. , 1976 .
[99] Marco O. P. Sampaio,et al. Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.
[100] A. Kostelecký,et al. Short-Range Gravity and Lorentz Violation , 2014, 1410.6162.
[101] A. Kostelecký,et al. Lorentz Violation with an Antisymmetric Tensor , 2009, 0912.4852.
[102] Q. Bailey. Lorentz-violating gravitoelectromagnetism , 2010, 1005.1435.
[103] E. F. Arias,et al. THE SECOND REALIZATION OF THE INTERNATIONAL CELESTIAL REFERENCE FRAME BY VERY LONG BASELINE INTERFEROMETRY , 2015 .
[104] E. V. Pitjeva,et al. Development of planetary ephemerides EPM and their applications , 2014 .
[105] R. Hulse,et al. Discovery of a pulsar in a binary system , 1975 .
[106] C. Talmadge. Reanalysis of the Eotvos Experiment , 1987 .
[107] Tensor-scalar gravity and binary-pulsar experiments. , 1996, Physical review. D, Particles and fields.
[108] C. Le Poncin-Lafitte,et al. General post-Minkowskian expansion of time transfer functions , 2008, 0803.0277.
[109] A. Balakin,et al. Einstein-aether theory with a Maxwell field: General formalism , 2014, 1407.6014.
[110] M. Planck,et al. The Confrontation between General Relativity and Experiment , 2006 .
[111] A. Fienga,et al. Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters , 2015 .
[112] T. Damour,et al. Strong-field tests of relativistic gravity and binary pulsars. , 1991, Physical review. D, Particles and fields.
[113] E. Pitjeva. Updated IAA RAS planetary ephemerides-EPM2011 and their use in scientific research , 2013, 1308.6416.
[114] R. Penrose,et al. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model , 2016, The European physical journal. C, Particles and fields.
[115] G. Renzetti,et al. Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment? , 2012 .
[116] A. Kostelecký,et al. Classical kinematics for Lorentz violation , 2010, 1008.5062.
[117] I. H. Park,et al. INDICATIONS OF INTERMEDIATE-SCALE ANISOTROPY OF COSMIC RAYS WITH ENERGY GREATER THAN 57 EeV IN THE NORTHERN SKY MEASURED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT , 2014, 1404.5890.
[118] Jun Luo,et al. Search for Lorentz violation in short-range gravity , 2014, 1412.8362.
[119] Ignazio Ciufolini,et al. Engineering and scientific aspects of LARES satellite , 2011 .
[120] T. Damour,et al. General relativistic celestial mechanics of binary systems. I. The post-newtonian motion , 1985 .
[121] Ephraim Fischbach,et al. The Search for Non-Newtonian Gravity , 1998 .
[122] Asymptotic equivalence of the jackknife and infinitesimal jackknife variance estimators for some smooth statistics , 2003, math/0301363.
[123] Chern-Simons modification of general relativity , 2003, gr-qc/0308071.
[124] M. Soffel,et al. Probing general relativity with radar astrometry in the inner solar system , 2011 .
[125] Giampiero Sindoni,et al. Testing General Relativity and gravitational physics using the LARES satellite , 2012, 1211.1374.
[126] A. Kostelecký,et al. $CPT$ violation and the standard model , 1997, hep-ph/9703464.
[127] H. Belich,et al. Lorentz violation and higher derivative gravity , 2014, 1409.5742.
[128] Jay D. Tasson,et al. The Standard-Model Extension and Gravitational Tests , 2016, Symmetry.
[129] Talmadge,et al. Model-independent constraints on possible modifications of Newtonian gravity. , 1988, Physical review letters.
[130] Measuring the relativistic perigee advance with satellite laser ranging , 2001, gr-qc/0103088.
[131] Slava G. Turyshev,et al. Lunar Laser Ranging Contributions to Relativity and Geodesy , 2008 .
[132] L. Iorio. Editorial for the Special Issue 100 Years of Chronogeometrodynamics: The Status of the Einstein's Theory of Gravitation in Its Centennial Year , 2015, 1504.05789.
[133] M. Kramer,et al. Pulsars as probes of gravity and fundamental physics , 2016, 1606.03843.
[134] J. R. Thomas,et al. Search for correlations between HiRes stereo events and active galactic nuclei , 2008, 0804.0382.
[135] Brane-antibrane inflation in orbifold and orientifold models , 2001, hep-th/0111025.
[136] J. Tasson,et al. What do we know about Lorentz invariance? , 2014, Reports on progress in physics. Physical Society.
[137] J. Wahr,et al. Tides for a convective Earth , 1999 .
[138] G. Pucacco,et al. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE) , 2015 .
[139] George F. Smoot,et al. General Relativity and Cosmology: Unsolved Questions and Future Directions , 2016, 1609.09781.
[140] C. Le Poncin-Lafitte,et al. Testing Lorentz Symmetry with Lunar Laser Ranging. , 2016, Physical review letters.
[141] J. Tasson,et al. Prospects for large relativity violations in matter-gravity couplings. , 2008, Physical review letters.
[142] J. Lense,et al. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .
[143] A. Kostelecký,et al. Electrodynamics with Lorentz-violating operators of arbitrary dimension , 2009, 0905.0031.
[144] S. Mouret. Tests of fundamental physics with the Gaia mission through the dynamics of minor planets , 2011 .
[145] N. Yunes,et al. Strong binary pulsar constraints on Lorentz violation in gravity. , 2013, Physical review letters.
[146] Giampiero Sindoni,et al. Phenomenology of the Lense-Thirring effect in the Solar System: Measurement of frame-dragging with laser ranged satellites , 2012 .
[147] W. D. Sitter. On Einstein's Theory of Gravitation and its Astronomical Consequences , 1916 .
[148] L. Iorio,et al. OPTIS—An Einstein Mission for Improved Tests of Special and General Relativity , 2004 .
[149] Marc-Thierry Jaekel,et al. TESTING THE NEWTON LAW AT LONG DISTANCES , 2005 .
[150] T. Jacobson,et al. Gravity with a dynamical preferred frame , 2000, gr-qc/0007031.
[151] Agnes Fienga,et al. Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity , 2013, 1306.5569.
[152] P. Freire,et al. The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity , 2012, 1205.1450.
[153] Sebastiano Ligori,et al. Gravitation astrometric measurement experiment , 2012 .
[154] S. Reynaud,et al. Tests of general relativity in the solar system , 2007, 0801.3407.
[155] A. Rivoldini,et al. Testing Lorentz Symmetry with Planetary Orbital Dynamics , 2015, 1508.03478.
[156] D. Champion,et al. A new limit on local Lorentz invariance violation of gravity from solitary pulsars , 2013, 1307.2552.
[157] H. Müller,et al. Equivalence principle and bound kinetic energy. , 2013, Physical review letters.
[158] A. Kostelecký,et al. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity , 2007, 0712.4119.
[159] E. Standish. The observational basis for JPL's DE 200, the planetary ephemerides of the Astronomical Almanac , 1990 .
[160] R. Lynch,et al. A millisecond pulsar in a stellar triple system , 2014, Nature.
[161] M. Milgrom. MOND effects in the inner Solar system , 2009, 0906.4817.
[162] A. Fienga,et al. The INPOP10a planetary ephemeris and its applications in fundamental physics , 2011 .
[163] A. Kostelecký,et al. Search for Lorentz violation in short-range gravity , 2014, 1412.8362.
[164] V. Kreinovich,et al. Relativistic reductions for radiointerferometric observables , 1983 .
[165] A. Kostelecký. Gravity, Lorentz violation, and the standard model , 2003, hep-th/0312310.
[166] S. Lambert,et al. Determination of the relativistic parameter gamma using very long baseline interferometry , 2009, 0903.1615.
[167] E. Standish. Testing alternate gravitational theories , 2009, Proceedings of the International Astronomical Union.
[168] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[169] Q. Bailey. Gravity Sector of the SME , 2016, 1607.07113.
[170] Kenneth Nordtvedt,et al. Testing relativity with laser ranging to the moon , 1968 .
[171] I. Stairs. Testing General Relativity with Pulsar Timing , 2003, Living reviews in relativity.
[172] Chris Stormer,et al. Explanatory Supplement to the Astronomical Almanac , 1995 .
[173] F. Mignard,et al. Gaia: Relativistic modelling and testing , 2009, Proceedings of the International Astronomical Union.
[174] K. Thorne,et al. Foundations for a Theory of Gravitation Theories , 1973 .
[175] A. Kostelecký,et al. Gravity from spontaneous Lorentz violation , 2009, 0901.0662.
[176] Robert Lupton,et al. Statistics in Theory and Practice , 2020 .
[177] Steven Chu,et al. Atom-interferometry tests of the isotropy of post-Newtonian gravity. , 2007, Physical review letters.
[178] A. Peters,et al. High-precision gravity measurements using atom interferometry , 1998 .
[179] S. Reynaud,et al. Post-Einsteinian tests of gravitation , 2005, gr-qc/0510068.
[180] G. Renzetti,et al. First results from LARES: An analysis , 2013 .
[181] E. V. Pitjeva,et al. EPM ephemerides and relativity , 2009, Proceedings of the International Astronomical Union.
[182] A. Landragin,et al. Underground operation at best sensitivity of the mobile LNE-SYRTE cold atom gravimeter , 2014 .
[183] Pierre Touboul,et al. The MICROSCOPE space mission , 2001 .
[184] Clifford M. Will,et al. Theory and Experiment in Gravitational Physics , 1982 .
[185] Sabine Fenstermacher. Handbook Of Pulsar Astronomy , 2016 .
[186] Arnaldo J. Vargas,et al. Lorentz and C P T tests with hydrogen, antihydrogen, and related systems , 2015, 1506.01706.
[187] E. M. Standish,et al. DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. , 1983 .
[188] N. Wex. The second post-Newtonian motion of compact binary-star systems with spin , 1995 .
[189] R. Lehnert,et al. Stability, causality, and Lorentz and CPT violation , 2000, hep-th/0012060.
[190] S. Lambert,et al. Lorentz symmetry and Very Long Baseline Interferometry , 2016, 1604.01663.
[191] Samuel,et al. Gravitational phenomenology in higher-dimensional theories and strings. , 1989, Physical review. D, Particles and fields.
[192] David E. Smith,et al. GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data , 2014, Geophysical research letters.
[193] Jun Luo,et al. Search for Lorentz invariance violation through tests of the gravitational inverse square law at short ranges , 2015, 1504.03280.
[194] Small-Scale Anisotropy of Cosmic Rays above 1019 eV Observed with the Akeno Giant Air Shower Array , 1999, astro-ph/9902239.
[195] J. Tasson,et al. Constraints on Lorentz violation from gravitational Čerenkov radiation , 2015, 1508.07007.
[196] C. Bordé. Atomic interferometry with internal state labelling , 1989 .
[197] Asymmetrically warped compactifications and gravitational Lorentz violation , 2003, hep-ph/0312245.
[198] J. Tasson,et al. Matter-gravity couplings and Lorentz violation , 2010, 1006.4106.
[199] B. Foster. Strong field effects on binary systems in Einstein-aether theory , 2007, 0706.0704.
[200] A. Nelson,et al. TESTS OF THE GRAVITATIONAL INVERSE-SQUARE LAW , 2003, hep-ph/0307284.
[201] K. Nordtvedt. Probing gravity to the second post-Newtonian order and to one part in 10 to the 7th using the spin axis of the sun , 1987 .
[202] T. Damour,et al. Tensor-multi-scalar theories of gravitation , 1991 .
[203] LASER ASTROMETRIC TEST OF RELATIVITY: SCIENCE, TECHNOLOGY AND MISSION DESIGN , 2007, gr-qc/0701102.
[204] Badr N. Alsuwaidan,et al. Gravity Probe B: final results of a space experiment to test general relativity. , 2011, Physical review letters.
[205] R. Ruffini,et al. Nonlinear Gravitodynamics: The Lense-Thirring Effect , 2003 .
[206] Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation , 2001, hep-ph/0106220.
[207] A. Kostelecký. RiemannFinsler geometry and Lorentz-violating kinematics , 2011, 1104.5488.
[208] A new test of conservation laws and Lorentz invariance in relativistic gravity , 1996, gr-qc/9606062.
[209] S. Carroll,et al. Noncommutative field theory and Lorentz violation. , 2001, Physical review letters.
[210] S. Capozziello,et al. GRAVITATIONAL CHERENKOV RADIATION FROM EXTENDED THEORIES OF GRAVITY , 2012, 1206.6681.
[211] D. Lucchesi,et al. LAGEOS II pericenter general relativistic precession (1993-2005): Error budget and constraints in gravitational physics , 2014 .
[212] C. Stubbs,et al. Testing for Lorentz violation: constraints on standard-model-extension parameters via lunar laser ranging. , 2007, Physical review letters.
[213] M. Seifert. Vector models of gravitational Lorentz symmetry breaking , 2009, 0903.2279.
[214] Lorenzo Iorio. Will the recently approved LARES mission be able to measure the Lense–Thirring effect at 1%? , 2008 .
[215] A. Kostelecký,et al. Data Tables for Lorentz and CPT Violation , 2008, 0801.0287.
[216] Giampiero Sindoni,et al. Towards a One Percent Measurement of Frame Dragging by Spin with Satellite Laser Ranging to LAGEOS, LAGEOS 2 and LARES and GRACE Gravity Models , 2009 .
[217] C. Will,et al. Conservation Laws and Preferred Frames in Relativistic Gravity. II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity , 1972 .
[218] S. Merkowitz. Tests of Gravity Using Lunar Laser Ranging , 2010, Living reviews in relativity.
[219] A. Kostelecký,et al. Testing local Lorentz invariance with gravitational waves , 2016, 1602.04782.
[220] Luciano Iess,et al. Cassini Radio Science , 2004 .
[221] Rodolfo Gambini,et al. Nonstandard optics from quantum space-time , 1999 .
[222] Lijing Shao. New pulsar limit on local Lorentz invariance violation of gravity in the standard-model extension , 2014, 1412.2320.
[223] K. Thorne,et al. Theoretical Frameworks for Testing Relativistic Gravity. I. Foundations , 1971 .
[224] H. Lichtenegger,et al. Phenomenology of the Lense-Thirring effect in the solar system , 2010, 1009.3225.
[225] E. Pitjeva,et al. Constraints on dark matter in the solar system , 2013, 1306.5534.
[226] J. Novak,et al. External field effect of modified Newtonian dynamics in the Solar system , 2010, 1010.1349.
[227] W. Folkner,et al. Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft , 2014, 1402.6950.