Three-Coloring Graphs Embedded on Surfaces with All Faces Even-Sided
暂无分享,去创建一个
[1] P. J. Heawood. Map-Colour Theorem , 1949 .
[2] Carsten Thomassen. Trees in Triangulations , 1994, J. Comb. Theory, Ser. B.
[3] Walter Stromquist,et al. Locally planar toroidal graphs are 5-colorable , 1982 .
[4] Carsten Thomassen,et al. Grötzsch's 3-Color Theorem and Its Counterparts for the Torus and the Projective Plane , 1994, J. Comb. Theory, Ser. B.
[5] G. Ringel. Map Color Theorem , 1974 .
[6] Nora Hartsfield,et al. Minimal quadrangulations of orientable surfaces , 1989, J. Comb. Theory, Ser. B.
[7] Carsten Thomassen,et al. Embeddings of graphs with no short noncontractible cycles , 1990, J. Comb. Theory, Ser. B.
[8] Michael O. Albertson,et al. On Six‐Chromatic Toroidal Graphs , 1980 .
[9] C. Thomassen,et al. Five-Coloring Maps on Surfaces , 1993, J. Comb. Theory, Ser. B.
[10] D. A. Youngs. 4-chromatic projective graphs , 1996 .
[11] Arthur T. White,et al. A 4-color theorem for toroidal graphs , 1972 .