A silyl andrographolide analogue suppresses Wnt/β-catenin signaling pathway in colon cancer.

[1]  E. Beltrão,et al.  DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[2]  Mintu Pal,et al.  Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[3]  S. Czinn,et al.  Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells , 2017, Oncotarget.

[4]  P. Tuchinda,et al.  5-Acetyl goniothalamin suppresses proliferation of breast cancer cells via Wnt/β-catenin signaling. , 2016, European journal of pharmacology.

[5]  S. Czinn,et al.  Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment , 2016, Oncotarget.

[6]  F. Valeriote,et al.  Topoisomerase IIα mediates TCF-dependent epithelial–mesenchymal transition in colon cancer , 2016, Oncogene.

[7]  J. Stanslas,et al.  SRJ23, a new semisynthetic andrographolide derivative: in vitro growth inhibition and mechanisms of cell cycle arrest and apoptosis in prostate cancer cells , 2014, Cell Biology and Toxicology.

[8]  S. Dutta,et al.  Induction of apoptosis in cholangiocarcinoma by an andrographolide analogue is mediated through topoisomerase II alpha inhibition. , 2014, European journal of pharmacology.

[9]  S. Dutta,et al.  Inhibition of topoisomerase II α activity and induction of apoptosis in mammalian cells by semi-synthetic andrographolide analogues , 2013, Investigational New Drugs.

[10]  R. Moon,et al.  WNT signalling pathways as therapeutic targets in cancer , 2012, Nature Reviews Cancer.

[11]  K. Suksen,et al.  A Phytoestrogen Diarylheptanoid Mediates Estrogen Receptor/Akt/Glycogen Synthase Kinase 3β Protein-dependent Activation of the Wnt/β-Catenin Signaling Pathway* , 2012, The Journal of Biological Chemistry.

[12]  Hans Clevers,et al.  Wnt/β-Catenin Signaling and Disease , 2012, Cell.

[13]  S. Sieber,et al.  Electrophilic natural products and their biological targets. , 2012, Natural product reports.

[14]  Yolanda Fernández,et al.  β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer , 2012, Nature Medicine.

[15]  Paul Polakis,et al.  Wnt signaling in cancer. , 2012, Cold Spring Harbor perspectives in biology.

[16]  J. Stanslas,et al.  Andrographolide and its analogues: versatile bioactive molecules for combating inflammation and cancer , 2012, Clinical and experimental pharmacology & physiology.

[17]  B. Schmidt,et al.  All tangled up: how cells direct, manage and exploit topoisomerase function , 2011, Nature Reviews Molecular Cell Biology.

[18]  Juan Zhou,et al.  Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P-glycoprotein. , 2011, Journal of pharmaceutical sciences.

[19]  M. Chatterjee,et al.  Synthesis, cytotoxicity, and structure-activity relationship (SAR) studies of andrographolide analogues as anti-cancer agent. , 2010, Bioorganic & medicinal chemistry letters.

[20]  Jingsong Yuan,et al.  Focus on histone variant H2AX: To be or not to be , 2010, FEBS letters.

[21]  S. Kaufmann,et al.  PARP inhibition: PARP1 and beyond , 2010, Nature Reviews Cancer.

[22]  Marc W. Kirschner,et al.  Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling , 2009, Nature.

[23]  J. Nitiss Targeting DNA topoisomerase II in cancer chemotherapy , 2009, Nature Reviews Cancer.

[24]  A. Lazaris,et al.  Topoisomerase I and IIα protein expression in primary colorectal cancer and recurrences following 5-fluorouracil-based adjuvant chemotherapy , 2008, Cancer Chemotherapy and Pharmacology.

[25]  M. Stevens,et al.  Benzylidene derivatives of andrographolide inhibit growth of breast and colon cancer cells in vitro by inducing G1 arrest and apoptosis , 2008, British journal of pharmacology.

[26]  W. Birchmeier,et al.  Wnt signalling and its impact on development and cancer , 2008, Nature Reviews Cancer.

[27]  Chika Yokota,et al.  Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions , 2007, Development.

[28]  S. Hirohashi,et al.  Functional Interaction of DNA Topoisomerase IIα With the β-Catenin and T-Cell Factor-4 Complex , 2007 .

[29]  M. Stevens,et al.  Semisynthesis and in vitro anticancer activities of andrographolide analogues. , 2007, Phytochemistry.

[30]  J. M. Babu,et al.  Synthesis and structure-activity relationships of andrographolide analogues as novel cytotoxic agents. , 2004, Bioorganic & medicinal chemistry letters.

[31]  B. Boman,et al.  Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. , 2001, Cancer research.

[32]  H. Wagner,et al.  Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human. , 2000, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[33]  Randall T Moon,et al.  Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2+ pathways , 1999, Oncogene.

[34]  C. Albanese,et al.  The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Paul Polakis,et al.  The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors , 1999, Oncogene.

[36]  A. Sparks,et al.  Identification of c-MYC as a target of the APC pathway. , 1998, Science.

[37]  Hans Clevers,et al.  Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC , 1997, Science.

[38]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[39]  K. Suksen,et al.  New substituted C-19-andrographolide analogues with potent cytotoxic activities. , 2012, Bioorganic & medicinal chemistry letters.