Tissue-specific Co-expression of Long Non-coding and Coding RNAs Associated with Breast Cancer

[1]  F. Pauler,et al.  Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans , 2016, Genome Biology.

[2]  Jindan Yu,et al.  LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer , 2015, Oncogene.

[3]  Minoru Yoshida,et al.  MALAT1 long non-coding RNA in cancer. , 2016, Biochimica et biophysica acta.

[4]  L. Pusztai,et al.  A genome-wide approach to link genotype to clinical outcome by utilizing next generation sequencing and gene chip data of 6,697 breast cancer patients , 2015, Genome Medicine.

[5]  A. Chinnaiyan,et al.  Long noncoding RNAs in cancer: from function to translation. , 2015, Trends in cancer.

[6]  Paul L. Roebuck,et al.  TANRIC: An Interactive Open Platform to Explore the Function of lncRNAs in Cancer. , 2015, Cancer research.

[7]  Ruifeng Lu,et al.  Microarray Profiling and Co-Expression Network Analysis of LncRNAs and mRNAs in Neonatal Rats Following Hypoxic-ischemic Brain Damage , 2015, Scientific Reports.

[8]  Satyanarayan Rao,et al.  Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets , 2015, Molecular and Cellular Therapies.

[9]  D. Gallie Faculty Opinions recommendation of The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. , 2015 .

[10]  J. Rinn,et al.  Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution , 2015, Genome Biology.

[11]  Myles Brown,et al.  Loss of estrogen-regulated microRNA expression increases HER2 signaling and is prognostic of poor outcome in luminal breast cancer. , 2015, Cancer research.

[12]  James T. Elder,et al.  Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin , 2015, Genome Biology.

[13]  A. Børresen-Dale,et al.  Long Non-Coding RNAs Differentially Expressed between Normal versus Primary Breast Tumor Tissues Disclose Converse Changes to Breast Cancer-Related Protein-Coding Genes , 2014, PloS one.

[14]  Lorenzo Farina,et al.  Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer , 2014, BMC Systems Biology.

[15]  X. Jianhua,et al.  Knockdown of CETN1 inhibits breast cancer cells proliferation. , 2014, Journal of B.U.ON. : official journal of the Balkan Union of Oncology.

[16]  Zhiming Zhang,et al.  Expression and Clinical Significance of Matrix Metalloproteinase-9 in Lymphatic Invasiveness and Metastasis of Breast Cancer , 2014, PloS one.

[17]  Lawrence C. LaPointe,et al.  CAHM, a long non-coding RNA gene hypermethylated in colorectal neoplasia , 2014, Epigenetics.

[18]  M. Sydes,et al.  A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. , 2014, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[19]  L. Attardi,et al.  Unravelling mechanisms of p53-mediated tumour suppression , 2014, Nature Reviews Cancer.

[20]  Andreas Krämer,et al.  Causal analysis approaches in Ingenuity Pathway Analysis , 2013, Bioinform..

[21]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[22]  Baiping Wu,et al.  Proteomic analysis reveals that MAEL, a component of nuage, interacts with stress granule proteins in cancer cells. , 2014, Oncology reports.

[23]  K. Rajagopalan,et al.  CETN1 is a cancer testis antigen with expression in prostate and pancreatic cancers , 2013, Biomarker Research.

[24]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[25]  Yunlong Liu,et al.  NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets , 2013, Bioinform..

[26]  Albert E. Almada,et al.  Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells , 2013, Proceedings of the National Academy of Sciences.

[27]  Xiaoke Ma,et al.  Long non-coding RNAs function annotation: a global prediction method based on bi-colored networks , 2012, Nucleic acids research.

[28]  Xiaoke Ma,et al.  Long non-coding RNAs function annotation : a global prediction method based on bicolored networks , 2013 .

[29]  Andrew H. Beck,et al.  Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers , 2012, Genome Biology.

[30]  Yurii S. Aulchenko,et al.  Genome-Wide Association Study Identifies Novel Loci Associated with Circulating Phospho- and Sphingolipid Concentrations , 2012, PLoS genetics.

[31]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[32]  Yan Wang,et al.  Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. , 2012, American journal of translational research.

[33]  Howard Y. Chang,et al.  Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. , 2011, Molecular cell.

[34]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[35]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[36]  J. Gustafsson,et al.  The different roles of ER subtypes in cancer biology and therapy , 2011, Nature Reviews Cancer.

[37]  J. Rinn,et al.  lincRNAs act in the circuitry controlling pluripotency and differentiation , 2011, Nature.

[38]  S. Elledge,et al.  A DNA Damage Response Screen Identifies RHINO, a 9-1-1 and TopBP1 Interacting Protein Required for ATR Signaling , 2011, Science.

[39]  Howard Y. Chang,et al.  Long noncoding RNAs and human disease. , 2011, Trends in cell biology.

[40]  Carolyn J. Brown,et al.  The functional role of long non-coding RNA in human carcinomas , 2011, Molecular Cancer.

[41]  T. Livache,et al.  TOX4 and its binding partners recognize DNA adducts generated by platinum anticancer drugs. , 2011, Archives of biochemistry and biophysics.

[42]  Shuli Kang,et al.  Large-scale prediction of long non-coding RNA functions in a coding–non-coding gene co-expression network , 2011, Nucleic acids research.

[43]  Antonio de las Morenas,et al.  Gene Expression Profiles of Estrogen Receptor–Positive and Estrogen Receptor–Negative Breast Cancers Are Detectable in Histologically Normal Breast Epithelium , 2010, Clinical Cancer Research.

[44]  Yusuke Nakamura,et al.  Involvement of C12orf32 overexpression in breast carcinogenesis. , 2010, International journal of oncology.

[45]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[46]  F. Balkwill Tumour necrosis factor and cancer , 2009, Nature Reviews Cancer.

[47]  J. Mattick,et al.  Long non-coding RNAs: insights into functions , 2009, Nature Reviews Genetics.

[48]  C. Ponting,et al.  Evolution and Functions of Long Noncoding RNAs , 2009, Cell.

[49]  Ralf Herwig,et al.  ConsensusPathDB—a database for integrating human functional interaction networks , 2008, Nucleic Acids Res..

[50]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[51]  J. Issa,et al.  Identification of Novel Tumor Markers in Prostate, Colon and Breast Cancer by Unbiased Methylation Profiling , 2008, PLoS ONE.

[52]  Victoria Kristina Perry,et al.  Gene expression abnormalities in histologically normal breast epithelium of breast cancer patients , 2007, International journal of cancer.

[53]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[54]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[55]  A. Balmain,et al.  TGF-beta signaling in tumor suppression and cancer progression. , 2001, Nature genetics.

[56]  T. Mukai,et al.  A novel imprinted gene, KCNQ1DN, within the WT2 critical region of human chromosome 11p15.5 and its reduced expression in Wilms' tumors. , 2000, Journal of biochemistry.

[57]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[58]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .