Solvent-Induced Assembly of Octacyanometalates-Based Coordination Polymers with Unique afm1 Topology and Magnetic Properties

Aqueous solution was introduced into the self-assembly of water-insoluble (Bu3NH)3[M(CN)8] (M = W, Mo) and Mn(NO3)2·6H2O to afford two, three-dimensional (3D) coordination polymers (CPs), {[μ8-MV(CN)8MnII2(H2O)2(CH3OH)][NO3]}n (M = W 1, Mo 2), while polymer {[μ4-WV(CN)8MnII2(DMF)8](ClO4)}n (DMF = N,N-dimethylformamide) (3) was crystallized from the reaction of (Bu3NH)3[W(CN)8] and Mn(ClO4)2·6H2O in DMF. All three CPs 1, 2, and 3 have been well-characterized by elemental analysis, infrared spectra, single-crystal X-ray diffraction, as well as thermogravimetric analysis. The single-crystal X-ray structural analysis shows that both CPs 1 and 2 crystallize in the monoclinic crystal system with space group of C2/c and possess the infinite 3D framework in an unprecedented afm1 topology geometry, which is an unreported 4-nodal 4,4,8,8-coordinated net with point symbol {411.612.85}{417.610.8}{45.6}4. Polymer 3 crystallizes in the space group of P42/m as a 3D supermolecule structure, which is constructed by one-di...

[1]  V. Blatov Nanocluster analysis of intermetallic structures with the program package TOPOS , 2012, Structural Chemistry.

[2]  L. Long,et al.  High-nuclearity 3d-4f clusters as enhanced magnetic coolers and molecular magnets. , 2012, Journal of the American Chemical Society.

[3]  M. Eddaoudi,et al.  Network diversity through decoration of trigonal-prismatic nodes: two-step crystal engineering of cationic metal-organic materials. , 2011, Angewandte Chemie.

[4]  L. Wojtas,et al.  Consequences of Partial Flexibility in 1,3-Benzenedicarboxylate Linkers: Kagomé Lattice and NbO Supramolecular Isomers from Complexation of a Bulky 1,3-Benzenedicarboxylate to Cu(II) Paddlewheel Moieties , 2011 .

[5]  Jingui Duan,et al.  Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. , 2011, Journal of the American Chemical Society.

[6]  K. Awaga,et al.  Heterobimetallic Tungsten/Molybdenum(IV)−Copper(II) MOFs Constructed by a Unique 2D → 3D Architecture and Exhibiting New Topology and Magnetic Properties , 2009 .

[7]  C. Kapusta,et al.  Iron(II)-octacyanoniobate(IV) ferromagnet with T(C) 43 K. , 2009, Dalton transactions.

[8]  S. Ohkoshi,et al.  Vanadium octacyanoniobate-based magnet with a Curie temperature of 138 K. , 2009, Inorganic chemistry.

[9]  D. Liao,et al.  Three types of heterometallic structural motifs based on [Mo(CN)8]3−/4− anion and MnII cation as building blocks , 2009 .

[10]  C. Duhayon,et al.  Dissimilar supramolecular organization for the heterotrimetallic assemblage ({LNiLn}{W(CN) 8 }) with Ln ¼ Y and La (L ¼ Schiff-base derivative) , 2008 .

[11]  B. Gaweł,et al.  Magnetic spongelike behavior of 3D ferrimagnetic {[Mn(II)(imH)]2[Nb(IV)(CN)8]}n with Tc = 62 K. , 2008, Inorganic chemistry.

[12]  W. Nitek,et al.  Testing the High Spin MnII9WV6 Cluster as Building Block for Three-Dimensional Coordination Networks , 2008 .

[13]  S. Tanase,et al.  Crystal structure, magnetic and thermal properties of the one-dimensional complex [Nd(pzam)3(H2O)Mo(CN)8] H2O , 2008 .

[14]  P. Cheng,et al.  A New Bimetallic Ferrimagnet ([Mn2II(H2O)2(CH3COO)][MoV(CN)8]·2H2O)n and Its Antiferromagnetic Analogue ([Mn2II(H2O)3Cl][MoV(CN)8]·4H2O)n , 2008 .

[15]  Xiaoping Shen,et al.  Synthesis, crystal structure and magnetic properties of a new three-dimensional cyano-bridged Ni(II)–Mo(IV) complex , 2008 .

[16]  Yi-zhi Li,et al.  Two trinuclear copper(II)-octacyanometalate(IV) bimetallic complexes coordinated with chiral ligands , 2008 .

[17]  W. Nitek,et al.  High Tc ferrimagnetic organic-inorganic hybrid materials with MnII-L-MnII and MnII-NC-NbIV linkages (L=pyrazine, pyrazine-N,N'-dioxide, bipyrimidine). , 2007, Inorganic chemistry.

[18]  J. Sutter,et al.  Synthesis, crystal structure, and magnetic properties of hexanuclear [{MnL2}4{Nb(CN)8}2] and Nonanuclear [{MnL2}6{Nb(CN)8}3] heterometallic clusters (L=bpy, phen). , 2007, Inorganic chemistry.

[19]  M. Rams,et al.  Tuning of magnetic properties of polynuclear lanthanide(III)-octacyanotungstate(V) systems: determination of ligand-field parameters and exchange interaction. , 2007, Inorganic chemistry.

[20]  Xiaoping Shen,et al.  Synthesis, crystal structure and magnetic properties of an octacyanometallate-based 3-D CuII-WIV bimetallic assembly , 2007 .

[21]  Xiaoping Shen,et al.  Synthesis, crystal structure and magnetic properties of a three-dimensional cyano-bridged heterometallic complex {NiII(Me6-[14]ane-N4)}2[WIV(CN)8] · 6H2O , 2007 .

[22]  B. Gaweł,et al.  Exploring the formation of 3D ferromagnetic cyano-bridged CuII2+x{CuII4[WV(CN)8]4−2x[WIV(CN)8]2x}·yH2O networks , 2007 .

[23]  K. Hashimoto,et al.  Synthesis and alcohol vapor sensitivity of a ferromagnetic copper-tungsten bimetallic assembly. , 2007, Journal of the American Chemical Society.

[24]  Xiaoping Shen,et al.  A novel three-dimensional CuII–MoIV bimetallic complex: Synthesis, crystal structure, and magnetic properties , 2007 .

[25]  K. Hashimoto,et al.  Syntheses, Structures, and Properties of Two Three-Dimensional Octacyanometalate-Based Polymers: Cs2Cu3[W(CN)8]2·4NH3·4H2O and Cu2[Mo(CN)8]·8NH3 , 2006 .

[26]  H. Furukawa,et al.  Porous Chiral Metal Organic Carboxylate Frameworks with a Double-interwoven SrSi2 Topology: M3(TTCA)2·6DMF·7H2O (TTCA = triphenylenetricarboxylate; M = Zn2+, Cd2+) , 2006 .

[27]  I. Imaz,et al.  Evidence for increased exchange interactions with 5d compared to 4d metal ions. Experimental and theoretical insights into the ferromagnetic interactions of a series of trinuclear [{M(CN)8}3-/NiII] compounds (M = MoV or WV). , 2006, Journal of the American Chemical Society.

[28]  K. Hashimoto,et al.  A sodalite-like framework based on octacyanomolybdate and neodymium with guest methanol molecules and neodymium octahydrate ions. , 2006, Angewandte Chemie.

[29]  K. Hashimoto,et al.  Photoinduced magnetization with a high curie temperature and a large coercive field in a cyano-bridged cobalt-tungstate bimetallic assembly. , 2006, Journal of the American Chemical Society.

[30]  R. Pel̷ka,et al.  [Ln(terpy)]3+ (Ln = Sm, Gd) entity forms isolated magnetic chains with [W(CN)8]3-. , 2006, Dalton transactions.

[31]  X. You,et al.  Octacyanometallate-based single-molecule magnets: Co(II)9M(V)6 (M = W, Mo). , 2005, Journal of the American Chemical Society.

[32]  K. Hashimoto,et al.  Electrochemical synthesis, crystal structure, and photomagnetic properties of a three-dimensional cyano-bridged copper-molybdenum complex. , 2005, Journal of the American Chemical Society.

[33]  J. Long,et al.  Directed assembly of metal-cyanide cluster magnets. , 2005, Accounts of chemical research.

[34]  S. Parkin,et al.  Synthesis and Structural Characterization of Bi- and Trimetallic Octacyanometalate(IV) Complexes: [Δ,Λ-MII(en)3][cis-MII(en)2(OH2)][MIV(CN)8]·2H2O and [cis-MII(en)2(OH2)]2[(μ-NC)2MIV(CN)6]·4H2O (MII = Mn, Co, Ni; MIV = Mo, W) , 2005 .

[35]  C. Hong,et al.  One-dimensional octacyanomolybdate-based Cu(II)--Mo(V) bimetallic assembly with a novel rope-ladder chain structure. , 2004, Inorganic chemistry.

[36]  J. Marrot,et al.  Reversible photoinduced magnetic properties in the heptanuclear complex [Mo(IV)(CN)(2)(CN--CuL)(6)](8+): a photomagnetic high-spin molecule. , 2004, Angewandte Chemie.

[37]  M. Rams,et al.  Crystal structures and magnetic properties of two low-dimensional materials constructed from [Mn(III)(salen)H2O]+ and [M(CN)8](3-/4-) (M = Mo or W) precursors. , 2004, Inorganic chemistry.

[38]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[39]  K. Hashimoto,et al.  Manganese(II) o ctacyanotungstate(V)-based magnet containing a noncoordinated aromatic molecule. , 2004, Journal of the American Chemical Society.

[40]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[41]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[42]  Wenbin Lin,et al.  Chiral porous coordination networks: rational design and applications in enantioselective processes , 2003 .

[43]  F. Lloret,et al.  Crystal structures and magnetic properties of two octacyanotungstate(IV) and (V)-cobalt(II) three-dimensional bimetallic frameworks. , 2003, Inorganic chemistry.

[44]  K. Hashimoto,et al.  Cooling-rate Dependent Ferromagnetism in a Two-dimensional Cyano-bridged Sm(III)-W(V) Complex , 2003 .

[45]  J. Sutter,et al.  Octadecanuclear Cluster or 1D Polymer with [{ML}2Nb(CN)8]n Motifs as a Function of {ML} (M = Ni(II), n = 6; M = Mn(II), n = ∞; L = Macrocycle) , 2003 .

[46]  Song Gao,et al.  Coexistence of long-range ferromagnetic ordering and glassy behavior in one-dimensional bimetallic cyano-bridged polymers. , 2003, Inorganic chemistry.

[47]  K. Hashimoto,et al.  Photoinduced magnetization in a two-dimensional cobalt octacyanotungstate. , 2003, Journal of the American Chemical Society.

[48]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[49]  Song Gao,et al.  [Cu(tn)]3[W(CN)8]2·3H2O and [Cu(pn)]3[W(CN)8]2·3H2O: Two Novel Cu(II)−W(V) Cyano-Bridged Two-Dimensional Coordination Polymers with Metamagnetism , 2003 .

[50]  K. Hashimoto,et al.  Synthesis, crystal structures, and magnetic properties of two cyano-bridged tungstate(V)-manganese(II) bimetallic magnets. , 2003, Inorganic chemistry.

[51]  Anthony L. Spek,et al.  Journal of , 1993 .

[52]  R. Clérac,et al.  Synthesis and Structure of a Two-Dimensional Cyano-Bridged Coordination Polymer [Cu(cyclam)]2[Mo(CN)8]·10.5H2O (Cyclam = 1,4,8,11-Tetraazacyclodecane) , 2003 .

[53]  Song Gao,et al.  Structures and magnetism of bimetallic octacyanometallates: honeycomb-like [Mo(CN)8Ni2(pn)4]n·4nH2O and binuclear [Mo(CN)8Ni(en)2(H2O)][Ni(en)3]·2H2O (pn=1,3-diaminopropane, en=1,2-diaminoethane) , 2002 .

[54]  K. Hashimoto,et al.  Crystal Structure and Magnetic Properties of Two-dimensional Cyanide-bridged Bimetallic Assembly Composed of CsI[MnII(3-cyanopyridine)2{WV(CN)8}]·H2O , 2002 .

[55]  M. Zaworotko,et al.  Crystal engineering of a nanoscale Kagomé lattice. , 2002, Angewandte Chemie.

[56]  J. Long,et al.  A cyano-bridged single-molecule magnet: slow magnetic relaxation in a trigonal prismatic MnMo(6)(CN)(18) cluster. , 2002, Journal of the American Chemical Society.

[57]  J. Szklarzewicz,et al.  X-ray evidence of CN bridging in bimetallic complexes based on [M(CN)8]4- (M = Mo, W). The crystal structure of [[Mn(bpy)2]2(mu-NC)2[Mo(CN)6]2(mu-CN)2[Mn(bpy)2]2].8H2O. , 2000, Inorganic chemistry.

[58]  K. Hashimoto,et al.  Crystal structure and magnetic properties of an octacyanometalate-based three-dimensional tungstate(V)-manganese(II) bimetallic assembly. , 2000, Inorganic chemistry.

[59]  M. Pilkington,et al.  High-Spin Molecules: A Novel Cyano-Bridged MnMo Molecular Cluster with aS=51/2 Ground State and Ferromagnetic Intercluster Ordering at Low Temperatures , 2000 .

[60]  A. Fujishima,et al.  A High-Spin Cyanide-Bridged Mn9W6 Cluster (S = 39/2) with a Full-Capped Cubane Structure , 2000 .

[61]  A. Jacobson,et al.  Synthesis and Structure of the Three‐Dimensional Coordination Polymers [(Me3Sn)4M(CN)8] (M = Mo, W) , 1995 .

[62]  K. Awaga,et al.  Two 3D coordination assemblies with same cluster configuration showing different magnetic behaviors: a ferromagnetic {[W(CN)8Co2(DMF)8][NO3]}n and a paramagnetic {W(CN)8Cu2(py)8}n , 2011 .

[63]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[64]  M. Zaworotko Molecules to Crystals, Crystals to Molecules ... and Back Again? , 2007 .

[65]  Michael J. Zaworotko,et al.  Suprasupermolecular Chemistry: Infinite Networks from Nanoscale Metal−Organic Building Blocks† , 2004 .

[66]  J. Černák Cyanocomplexes with one-dimensional structures: preparations, crystal structures and magnetic properties , 2002 .

[67]  C. Mathonière,et al.  Structural and photomagnetic studies of a 1-D bimetallic chain [MnII2(L)2(H2O)][MoIV(CN)8]·5H2O (L = macrocycle): analogy with the photo-oxidation of K4[MoIV(CN)8]·2H2O , 2000 .