Anion conductivity of cation exchange membranes in aqueous supporting electrolytes

[1]  K. Kreuer,et al.  Fast and Selective Ionic Transport: From Ion-Conducting Channels to Ion Exchange Membranes for Flow Batteries , 2021, Annual Review of Materials Research.

[2]  K. Bouzek,et al.  Overview: State-of-the Art Commercial Membranes for Anion Exchange Membrane Water Electrolysis , 2021 .

[3]  D. Pant,et al.  Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts , 2020 .

[4]  W. Lehnert,et al.  Phosphoric Acid Dynamics in High Temperature Polymer Electrolyte Membranes , 2020 .

[5]  Ezra L. Clark,et al.  Insights into the Carbon Balance for CO2 Electroreduction on Cu using Gas Diffusion Electrode Reactor Designs , 2020, Energy & Environmental Science.

[6]  K. Kreuer,et al.  Selective ion transport through hydrated cation and anion exchange membranes I. The effect of specific interactions , 2019 .

[7]  L. Gubler Membranes and separators for redox flow batteries , 2019 .

[8]  I. Chorkendorff,et al.  Analysis of Mass Flows and Membrane Crossover in CO2 Reduction at High Current Densities in a MEA-Type Electrolyzer. , 2019, ACS applied materials & interfaces.

[9]  Matthias Wessling,et al.  The electrolyte matters: Stable systems for high rate electrochemical CO2 reduction , 2019, Journal of CO2 Utilization.

[10]  Thomas J. Schmidt,et al.  Design Principles of Bipolar Electrochemical Co-Electrolysis Cells for Efficient Reduction of Carbon Dioxide from Gas Phase at Low Temperature , 2019, Journal of The Electrochemical Society.

[11]  Dario R. Dekel,et al.  Anion exchange membrane fuel cells: Current status and remaining challenges , 2018 .

[12]  W. Lehnert,et al.  Determination of Anion Transference Number and Phosphoric Acid Diffusion Coefficient in High Temperature Polymer Electrolyte Membranes , 2018 .

[13]  D. Aili,et al.  Probing phosphoric acid redistribution and anion migration in polybenzimidazole membranes , 2017 .

[14]  Robert Kutz,et al.  Sustainion Imidazolium‐Functionalized Polymers for Carbon Dioxide Electrolysis , 2017 .

[15]  A. I. Karelin,et al.  Study of the transport of alkali metal ions in a nonaqueous polymer electrolyte based on Nafion , 2017 .

[16]  A. Weber,et al.  New Insights into Perfluorinated Sulfonic-Acid Ionomers. , 2017, Chemical reviews.

[17]  Y. Hwang,et al.  Contributors to Enhanced CO2 Electroreduction Activity and Stability in a Nanostructured Au Electrocatalyst. , 2016, ChemSusChem.

[18]  Jai Hyun Koh,et al.  Gold catalyst reactivity for CO2 electro-reduction: From nano particle to layer , 2016 .

[19]  José Solla-Gullón,et al.  Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size , 2015 .

[20]  D. Aili,et al.  Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis , 2015 .

[21]  Y. Nakano,et al.  Effect of CO2 Bubbling into Aqueous Solutions Used for Electrochemical Reduction of CO2 for Energy Conversion and Storage , 2015 .

[22]  K. Kreuer,et al.  Hydroxide, halide and water transport in a model anion exchange membrane , 2014 .

[23]  Anil Verma,et al.  Electrochemical conversion of CO₂ to fuels: tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte. , 2014, Physical chemistry chemical physics : PCCP.

[24]  Jingjie Wu,et al.  Electrochemical Reduction of Carbon Dioxide II. Design, Assembly, and Performance of Low Temperature Full Electrochemical Cells , 2013 .

[25]  Dc Kitty Nijmeijer,et al.  Anion exchange membranes for alkaline fuel cells: A review , 2011 .

[26]  J. Goodwin,et al.  Effect of cations (Na+, Ca2+, Fe3+) on the conductivity of a Nafion membrane , 2010 .

[27]  H. Gasteiger,et al.  Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes , 2010 .

[28]  Amalendu Chandra,et al.  Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton. , 2010, Chemical reviews.

[29]  Stephen J. Paddison,et al.  Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells , 2008 .

[30]  J. Jorné,et al.  Study of the Exchange Current Density for the Hydrogen Oxidation and Evolution Reactions , 2007 .

[31]  Dominik Marx,et al.  Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  Nikhil H. Jalani,et al.  The effect of equivalent weight, temperature, cationic forms, sorbates, and nanoinorganic additives on the sorption behavior of Nafion ® , 2005 .

[33]  Marc Doyle,et al.  Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties , 2001 .

[34]  Sangita D. Kumar,et al.  Permeation of inorganic anions through Nafion ionomer membrane , 1997 .

[35]  K. Kreuer Proton Conductivity: Materials and Applications , 1996 .

[36]  R. Iyer,et al.  Methanol and water uptake, densities, equivalental volumes and thicknesses of several uni- and divalent ionic perfluorosulphonate exchange membranes (Nafion-117) and their methanol-water fractionation behaviour at 298 K , 1992 .

[37]  T. Gierke,et al.  Ion transport and clustering in nafion perfluorinated membranes , 1983 .

[38]  S. Srinivasan,et al.  Perfluorosulphonic acid (Nafion) membrane as a separator for an advanced alkaline water electrolyser , 1980 .