Dynamics of $(2+1)$-dimensional SOS surfaces above a wall: Slow mixing induced by entropic repulsion

We study the Glauber dynamics for the $(2+1)\mathrm{D}$ Solid-On-Solid model above a hard wall and below a far away ceiling, on an $L\times L$ box of $\mathbb{Z}^2$ with zero boundary conditions, at large inverse-temperature $\beta$. It was shown by Bricmont, El Mellouki and Fr\"{o}hlich [J. Stat. Phys. 42 (1986) 743-798] that the floor constraint induces an entropic repulsion effect which lifts the surface to an average height $H\asymp(1/\beta)\log L$. As an essential step in understanding the effect of entropic repulsion on the Glauber dynamics we determine the equilibrium height $H$ to within an additive constant: $H=(1/4\beta)\log L+O(1)$. We then show that starting from zero initial conditions the surface rises to its final height $H$ through a sequence of metastable transitions between consecutive levels. The time for a transition from height $h=aH$, $a\in(0,1)$, to height $h+1$ is roughly $\exp(cL^a)$ for some constant $c>0$. In particular, the mixing time of the dynamics is exponentially large in $L$, that is, $T_{\mathrm{MIX}}\geq e^{cL}$. We also provide the matching upper bound $T_{\mathrm{MIX}}\leq e^{c'L}$, requiring a challenging analysis of the statistics of height contours at low temperature and new coupling ideas and techniques. Finally, to emphasize the role of entropic repulsion we show that without a floor constraint at height zero the mixing time is no longer exponentially large in $L$.

[1]  Jürg Fröhlich,et al.  The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas , 1981 .

[2]  Roberto H. Schonmann,et al.  Wulff Droplets and the Metastable Relaxation of Kinetic Ising Models , 1998 .

[3]  C. E. Wayne,et al.  Decay of correlations in surface models , 1982 .

[4]  F. Toninelli,et al.  Zero-temperature 2D Ising model and anisotropic curve-shortening flow , 2011, 1112.3160.

[5]  R. H. Schonmann,et al.  Lifshitz' law for the volume of a two-dimensional droplet at zero temperature , 1995 .

[6]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[7]  V. Climenhaga Markov chains and mixing times , 2013 .

[8]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[9]  F. Toninelli,et al.  On the Mixing Time of the 2D Stochastic Ising Model with “Plus” Boundary Conditions at Low Temperature , 2009, 0905.3040.

[10]  L. Schulman,et al.  CORRIGENDUM: Roughening transition, surface tension and equilibrium droplet shapes in a two-dimensional Ising system , 1982 .

[11]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[12]  G. Giacomin Random Polymer Models , 2007 .

[13]  J. Scheutjens,et al.  Directed Models of Polymers, Interfaces, and Clusters: Scaling and Finite-Size Properties , 1990 .

[14]  F. Martinelli,et al.  Mixing Times of Monotone Surfaces and SOS Interfaces: A Mean Curvature Approach , 2011, 1101.4190.

[15]  S. Miracle-Sole,et al.  Some problems connected with the description of coexisting phases at low temperatures in the Ising model , 1973 .

[16]  F. Martinelli On the two-dimensional dynamical Ising model in the phase coexistence region , 1994 .

[17]  E. Bolthausen,et al.  Entropic repulsion and the maximum of the two-dimensional harmonic crystal , 2001 .

[18]  H. Beijeren Interface sharpness in the Ising system , 1975 .

[19]  Entropic repulsion of an interface in an external field , 2003, math/0307043.

[20]  J. Fröhlich,et al.  The Berezinskii-Kosterlitz-Thouless Transition (Energy-Entropy Arguments and Renormalization in Defect Gases) , 1983 .

[21]  R. Kenyon,et al.  Dimers and amoebae , 2003, math-ph/0311005.

[22]  M. Lifshitz,et al.  KINETICS OF ORDERING DURING SECOND-ORDER PHASE TRANSITIONS , 2014 .

[23]  C. Fortuin,et al.  Correlation inequalities on some partially ordered sets , 1971 .

[24]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[25]  J. Bricmont,et al.  Random surfaces in statistical mechanics: Roughening, rounding, wetting,... , 1986 .

[26]  J. Fröhlich,et al.  Kosterlitz-Thouless Transition in the Two-Dimensional Plane Rotator and Coulomb Gas , 1981 .

[27]  Michael E. Fisher,et al.  Walks, walls, wetting, and melting , 1984 .

[28]  Allan Sly,et al.  Quasi-polynomial mixing of the 2D stochastic Ising model with , 2010, 1012.1271.

[29]  H. Poincaré,et al.  Percolation ? , 1982 .

[30]  J. Lebowitz,et al.  Surface tension, percolation, and roughening , 1982 .

[31]  R. L. Dobrushin,et al.  Wulff Construction: A Global Shape from Local Interaction , 1992 .

[32]  Y. Velenik Localization and delocalization of random interfaces , 2005, math/0509695.

[33]  Jürg Fröhlich,et al.  Scaling and Self-Similarity in Physics , 1983 .

[34]  Y. Peres,et al.  Can Extra Updates Delay Mixing? , 2011, 1112.0603.

[35]  Fabio Martinelli,et al.  Mixing time for the solid-on-solid model , 2009, STOC '09.

[36]  H. Beijeren,et al.  Exactly solvable model for the roughening transition of a crystal surface , 1977 .

[37]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[38]  The serial harness interacting with a wall , 2002, math/0210218.

[39]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[40]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[41]  K. Alexander,et al.  Layering and Wetting Transitions for an SOS Interface , 2009, 0908.0321.

[42]  O. Zeitouni,et al.  Entropic repulsion of the lattice free field , 1995 .

[43]  J.M.A.M. van Neerven,et al.  Random walk representations and entropic repulsion for gradient models , 2000 .

[44]  P. F. Allen,et al.  Surface Tension , 2004 .

[45]  David Preiss,et al.  Cluster expansion for abstract polymer models , 1986 .

[46]  H. Temperley Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .

[47]  Pietro Caputo,et al.  “Zero” temperature stochastic 3D ising model and dimer covering fluctuations: A first step towards interface mean curvature motion , 2010, 1007.3599.

[48]  E. Davies,et al.  Metastability and the Ising model , 1982 .

[49]  Vladimir Privman,et al.  Line interfaces in two dimensions: Solid-on-solid models , 1989 .

[50]  On the layering transition of an SOS surface interacting with a wall. II. The Glauber dynamics , 1996 .

[51]  H. Temperley Statistical mechanics and the partition of numbers II. The form of crystal surfaces , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[52]  Entropic repulsion for massless fields , 2000 .

[53]  R. Schonmann,et al.  Stretched Exponential Fixation in Stochastic Ising Models at Zero Temperature , 2002 .

[54]  Localization-delocalization phenomena for random interfaces , 2003, math/0304366.

[55]  ALLAN FERGUSON,et al.  Surface Tension* , 1934, Nature.

[56]  F. Martinelli,et al.  On the two-dimensional stochastic Ising model in the phase coexistence region near the critical point , 1996 .

[57]  Fisher,et al.  Dynamics of droplet fluctuations in pure and random Ising systems. , 1987, Physical review. B, Condensed matter.

[58]  F. Martinelli Lectures on Glauber dynamics for discrete spin models , 1999 .

[59]  J. Deuschel,et al.  The dynamic of entropic repulsion , 2007 .

[60]  Fabio Lucio Toninelli,et al.  Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow , 2014 .

[61]  I. Sinai,et al.  Theory of Phase Transitions: Rigorous Results , 2013 .