Analysis of an Iterated Local Search Algorithm for Vertex Coloring

Hybridizations of evolutionary algorithms and local search are among the best-performing algorithms for vertex coloring. However, the theoretical knowledge about these algorithms is very limited and it is agreed that a solid theoretical foundation is needed. We consider an iterated local search algorithm that iteratively tries to improve a coloring by applying mutation followed by local search. We investigate the capabilities and the limitations of this approach using bounds on the expected number of iterations until an optimal or near-optimal coloring is found. This is done for two different mutation operators and for different graph classes: bipartite graphs, sparse random graphs, and planar graphs.

[1]  Leonid Barenboim,et al.  Distributed (δ+1)-coloring in linear (in δ) time , 2009, STOC '09.

[2]  Béla Bollobás,et al.  Random Graphs , 1985 .

[3]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[4]  Thomas Stützle,et al.  An application of Iterated Local Search to Graph Coloring , 2002 .

[5]  Dirk Sudholt,et al.  Crossover is provably essential for the Ising model on trees , 2005, GECCO '05.

[6]  Adrian Kosowski,et al.  Self-stabilizing Algorithms for Graph Coloring with Improved Performance Guarantees , 2006, ICAISC.

[7]  Ingo Wegener,et al.  The one-dimensional Ising model: Mutation versus recombination , 2005, Theor. Comput. Sci..

[8]  Roberto Grossi,et al.  Mathematical Foundations Of Computer Science 2003 , 2003 .

[9]  Kenneth de Jong,et al.  Evolutionary computation: a unified approach , 2007, GECCO.

[10]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[11]  Feng Luo,et al.  Exploring the k-colorable landscape with Iterated Greedy , 1993, Cliques, Coloring, and Satisfiability.

[12]  Dirk Sudholt,et al.  Hybridizing Evolutionary Algorithms with Variable-Depth Search to Overcome Local Optima , 2011, Algorithmica.

[13]  Thomas Stützle,et al.  An Experimental Investigation of Iterated Local Search for Coloring Graphs , 2002, EvoWorkshops.

[14]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[15]  Carsten Witt,et al.  Greedy Local Search and Vertex Cover in Sparse Random Graphs , 2009, TAMC.

[16]  Dirk Sudholt,et al.  The impact of parametrization in memetic evolutionary algorithms , 2009, Theor. Comput. Sci..

[17]  Dirk Sudholt,et al.  Local Search in Evolutionary Algorithms: The Impact of the Local Search Frequency , 2006, ISAAC.

[18]  Subhash Khot,et al.  Improved inapproximability results for MaxClique, chromatic number and approximate graph coloring , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[19]  Ingo Wegener,et al.  Towards a Theory of Randomized Search Heuristics , 2003, MFCS.

[20]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[21]  Mehmet Hakan Karaata,et al.  A self-stabilizing algorithm for coloring planar graphs , 2005, Distributed Computing.

[22]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[23]  Ryszard Tadeusiewicz,et al.  Artificial Intelligence and Soft Computing - ICAISC 2006, 8th International Conference, Zakopane, Poland, June 25-29, 2006, Proceedings , 2006, International Conference on Artificial Intelligence and Soft Computing.

[24]  Ingo Wegener,et al.  Complexity theory - exploring the limits of efficient algorithms , 2005 .

[25]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[26]  Frank Harary,et al.  Graph Theory , 2016 .

[27]  Qi Liu,et al.  On the First-Fit Chromatic Number of Graphs , 2008, SIAM J. Discret. Math..

[28]  Xin Yao,et al.  Time complexity of evolutionary algorithms for combinatorial optimization: A decade of results , 2007, Int. J. Autom. Comput..

[29]  Manouchehr Zaker Inequalities for the Grundy chromatic number of graphs , 2007, Discret. Appl. Math..

[30]  Pradip K. Srimani,et al.  Linear time self-stabilizing colorings , 2003, Inf. Process. Lett..

[31]  Alain Hertz,et al.  A survey of local search methods for graph coloring , 2004, Comput. Oper. Res..