A Numerical Model for Predicting Gas Diffusion Layer Failure in Proton Exchange Membrane Fuel Cells

Gas diffusion layer (GDL) is one of the critical components in proton exchange membrane fuel cells (PEMFCs) and plays several important roles, such as structural support, reactants permeation, water removal, electrons, and heat conduction. The assembly pressure on bipolar plate is an important factor that affects the performance of PEMFC stack. Not enough assembly pressure leads to leakage of fuels and high contact resistance. Too much pressure, on the other hand, results in damage to the GDL, which increases the GDL Ohmic resistance and interfacial contact resistance, and in turn influences the reactant transport and water removal. The objective of the present study is to develop a numerical model to predict the onset of GDL failure and obtain the maximum assembly pressure on bipolar plate. Composite micromechanical model is applied to calculate the effective elastic properties of GDL; strength failure criterion is established to judge GDL damage with the stress distribution; finite element method model is developed to show the failure zone and the failure propagation in GDL combining the estimated elastic properties and strength failure criterion. Toray TGP-H-060 carbon paper is introduced as a numerical example and the numerical results show good agreements with experimental results. This numerical prediction model is beneficial to understand the basic mechanism of GDL failure and helpful to guide the assembling of PEMFC stack.

[1]  Michael H. Santare,et al.  An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane , 2006 .

[2]  D. Steven Keller,et al.  The compressive response of a stratified fibrous structure , 2005 .

[3]  Albert J. Shih,et al.  A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells , 2007 .

[4]  Lin Wang,et al.  A parametric study of PEM fuel cell performances , 2003 .

[5]  D. D. Edie,et al.  An end-effect model for the single-filament tensile test , 1994, Journal of Materials Science.

[6]  Chengwei Wu,et al.  Contact resistance prediction and structure optimization of bipolar plates , 2006 .

[7]  John M. Hedgepeth,et al.  Local Stress Concentrations in Imperfect Filamentary Composite Materials , 1967 .

[8]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[9]  Viral S. Mehta,et al.  Review and analysis of PEM fuel cell design and manufacturing , 2003 .

[10]  H. Böhm,et al.  Normalized diagrams for micromechanical estimates of the elastic response of composite materials , 2002 .

[11]  C. Bernardo,et al.  A model to predict the strength of short fiber composites , 1999 .

[12]  Stephen W. Tsai,et al.  A General Theory of Strength for Anisotropic Materials , 1971 .

[13]  Chang-Soo Kim,et al.  Effects of channel configurations of flow field plates on the performance of a PEMFC , 2004 .

[14]  G. P. Tandon,et al.  The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites , 1984 .

[15]  Ramin Roshandel,et al.  The effects of porosity distribution variation on PEM fuel cell performance , 2005 .

[16]  T. Nguyen,et al.  Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields , 2000 .

[17]  Peter Schwartz,et al.  A Study of Statistical Variability in the Strength of Single Aramid Filaments , 1984 .

[18]  Michael H. Santare,et al.  Stresses in Proton Exchange Membranes Due to Hygro-Thermal Loading , 2006 .

[19]  J. W. Van Zee,et al.  The effects of compression and gas diffusion layers on the performance of a PEM fuel cell , 1999 .

[20]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[21]  G. P. Tandon,et al.  Elastic moduli for a class of porous materials , 1989 .

[22]  W. B. Johnson,et al.  Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle , 2006 .

[23]  R. Pitchumani,et al.  MEASUREMENT AND PREDICTION OF ELECTRICAL CONTACT RESISTANCE BETWEEN GAS DIFFUSION LAYERS AND BIPOLAR PLATE FOR APPLICATIONS TO PEM FUEL CELLS , 2004 .

[24]  J. Charrier,et al.  A simple illustration of structure-properties relationships for short fiber-reinforced thermoplastics , 1989 .

[25]  Suresh G. Advani,et al.  The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites , 1987 .

[26]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .

[27]  Chaoyang Wang,et al.  Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells , 2007 .

[28]  A. Morin,et al.  Characterization of PEMFCs gas diffusion layers properties , 2006 .

[29]  Shuxin Wang,et al.  An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells , 2009 .

[30]  N. Djilali,et al.  Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers , 2007 .

[31]  Chengwei Wu,et al.  Influence of clamping force on the performance of PEMFCs , 2007 .