Multi-vehicle control and optimization for spatiotemporal sampling

In this paper we analyze the mapping accuracy of a sensor network using a quantitative measure of the mapping error as performance metric. We use optimal interpolation to calculate the estimation error of a map of a spatiotemporal field produced by assimilating observations collected by a group of vehicles. The vehicles travel in a closed trajectory in a steady, uniform flowfield. The mapping error is analyzed for statistically homogeneous fields and for inhomogeneous fields in which the correlation coefficient depends on position. For the homogeneous field, we design a closed-loop speed controller to minimize the average mapping error and, for the inhomogeneous field, we introduce an artificial flowfield to minimize a convex combination of the average error and maximum error.

[1]  F. Bretherton,et al.  A technique for objective analysis and design of oceanographic experiments applied to MODE-73* , 2002 .

[2]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[3]  Michael A. Demetriou,et al.  Guidance of Mobile Actuator-Plus-Sensor Networks for Improved Control and Estimation of Distributed Parameter Systems , 2010, IEEE Transactions on Automatic Control.

[4]  Derek A. Paley Cooperative control of collective motion for ocean sampling with autonomous vehicles , 2007 .

[5]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[6]  Yangquan Chen,et al.  Optimal mobile sensor motion planning under nonholomonic constraints for parameter estimation of distributed systems , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Eric W. Frew,et al.  Toward model free atmospheric sensing by aerial robot networks in strong wind fields , 2009, 2009 IEEE International Conference on Robotics and Automation.

[8]  Mac Schwager,et al.  Persistent monitoring of changing environments using a robot with limited range sensing , 2011, 2011 IEEE International Conference on Robotics and Automation.

[9]  P. B. Liebelt An Introduction To Optimal Estimation , 1967 .

[10]  P. S. Krishnaprasad,et al.  Equilibria and steering laws for planar formations , 2004, Syst. Control. Lett..

[11]  Kemper Lewis,et al.  Intuitive visualization of Pareto Frontier for multi-objective optimization in n-dimensional performance space , 2004 .

[12]  M.A. Demetriou,et al.  An approach to the optimal scanning measurement problem using optimum experimental design , 2004, Proceedings of the 2004 American Control Conference.

[13]  Arnt Eliassen,et al.  Upper air network requirements for numerical weather prediction : report of a working group of the Commission for Aerology . Rapport préliminaire du groupe de travail de la Commission de Météorologie Synoptique sur les réseaux , 1960 .

[14]  Derek A. Paley,et al.  Stabilization of Collective Motion in a Time-Invariant Flowfield , 2009 .

[15]  D. Menemenlis Inverse Modeling of the Ocean and Atmosphere , 2002 .

[16]  Naomi Ehrich Leonard,et al.  Routing strategies for underwater gliders , 2009 .