Mixed moment estimator and location invariant alternatives

A new class of estimators of the extreme value index is developed. It has a simple form and is asymptotically very close to the maximum likelihood estimator for a wide class of heavy-tailed models. We also propose an alternative class of estimators, dependent on a tuning parameter p ∈ (0,1) and invariant for changes in both scale and/or location. Such a tuning parameter can help us to choose the number of top order statistics to be used in the estimation of extreme parameters.

[1]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[2]  Laurens de Haan,et al.  On maximum likelihood estimation of the extreme value index , 2004, math/0407062.

[3]  M. Ivette Gomes,et al.  Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .

[4]  M. Ivette Gomes,et al.  A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .

[5]  P. Billingsley,et al.  Probability and Measure , 1980 .

[6]  Jan Beirlant,et al.  Estimation of the extreme-value index and generalized quantile plots , 2005 .

[7]  A. Jenkinson The frequency distribution of the annual maximum (or minimum) values of meteorological elements , 1955 .

[8]  M. Ivette Gomes,et al.  PORT Hill and Moment Estimators for Heavy-Tailed Models , 2008, Commun. Stat. Simul. Comput..

[9]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[10]  J. Tiago de Oliveira,et al.  Statistical Extremes and Applications , 1984 .

[11]  Holger Drees,et al.  On Smooth Statistical Tail Functionals , 1998 .

[12]  M. Ivette Gomes,et al.  DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .

[13]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[15]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[16]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[17]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[18]  Jan Beirlant,et al.  Excess functions and estimation of the extreme-value index , 1996 .

[19]  Laurens de Haan,et al.  Slow Variation and Characterization of Domains of Attraction , 1984 .

[20]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[21]  Laurens de Haan,et al.  On regular variation and its application to the weak convergence of sample extremes , 1973 .

[22]  L. Haan,et al.  On optimising the estimation of high quantiles of a probability distribution , 2003 .

[23]  M. Ivette Gomes,et al.  IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION , 2007 .