Global solutions for the stochastic reaction-diffusion equation with super-linear multiplicative noise and strong dissipativity

A condition is identified that implies that solutions to the stochastic reaction-diffusion equation ∂u ∂t = Au+f(u)+σ(u)Ẇ on a bounded spatial domain never explode. We consider the case where σ grows polynomially and f is polynomially dissipative, meaning that f strongly forces solutions toward finite values. This result demonstrates the role that the deterministic forcing term f plays in preventing explosion.

[1]  R. Manthey,et al.  Stochastic evolution equations in L2vp , 1999 .

[2]  J. Zabczyk,et al.  Nonlinear stochastic wave and heat equations , 2000 .

[3]  Robert C. Dalang,et al.  A Minicourse on Stochastic Partial Differential Equations , 2008 .

[4]  The critical parameter for the heat equation with a noise term to blow up in finite time , 1999, math/9902126.

[5]  F. Flandoli,et al.  Pathwise uniqueness for stochastic reaction-diffusion equations in Banach spaces with an Hölder drift component , 2012, 1212.5377.

[6]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[7]  Ornstein–Uhlenbeck processes with singular drifts: integral estimates and Girsanov densities , 2018 .

[8]  M. Röckner,et al.  Stochastic Partial Differential Equations: An Introduction , 2015 .

[9]  S. Cerrai Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term , 2003 .

[10]  Blowup for the heat equation with a noise term , 1993 .

[11]  Sandra Cerrai,et al.  Averaging Principle for Systems of Reaction-Diffusion Equations with Polynomial Nonlinearities Perturbed by Multiplicative Noise , 2011, SIAM J. Math. Anal..

[12]  Sandra Cerrai,et al.  A Khasminskii type averaging principle for stochastic reaction–diffusion equations , 2008, 0805.0294.

[13]  M. Rockner,et al.  On uniqueness of mild solutions for dissipative stochastic evolution equations , 2010, 1001.5413.

[14]  C. Mueller Long-time existence for signed solutions of the heat equation with a noise term , 1998 .

[15]  Szymon Peszat,et al.  Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process , 1999 .

[16]  P. Chow,et al.  Explosive solutions of stochastic reaction-diffusion equations in mean Lp-norm , 2011 .

[17]  P. Bezdek Existence and blow-up of solutions to the fractional stochastic heat equations , 2018 .

[18]  S. Cerrai Second Order Pde's in Finite and Infinite Dimension: A Probabilistic Approach , 2001 .

[19]  PAO-LIU CHOW UNBOUNDED POSITIVE SOLUTIONS OF NONLINEAR PARABOLIC ITÔ EQUATIONS , 2009 .

[20]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[21]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint Flour XIV, 1984 , 1986 .

[22]  C. Mueller Long time existence for the heat equation with a noise term , 1991 .

[23]  K. Iwata An infinite dimensional stochastic differential equation with state spaceC(ℝ) , 1987 .

[24]  Robert C. Dalang,et al.  Corrections to: Extending the martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E. 's , 1999 .

[25]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[26]  Carlo Marinelli,et al.  On Well-Posedness of Semilinear Stochastic Evolution Equations on Lp Spaces , 2015, SIAM J. Math. Anal..

[27]  Richard B. Sowers,et al.  Large Deviations for a Reaction-Diffusion Equation with Non-Gaussian Perturbations , 1992 .

[28]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[29]  Some non-existence results for a class of stochastic partial differential equations , 2016, Journal of Differential Equations.

[30]  G. Prato,et al.  Singular dissipative stochastic equations in Hilbert spaces , 2002 .