Genome-wide surveys for phosphorylation-dependent substrates of SCF ubiquitin ligases.

[1]  B. Clurman,et al.  The SV40 Large T Antigen Contains a Decoy Phosphodegron That Mediates Its Interactions with Fbw7/hCdc4*♦ , 2005, Journal of Biological Chemistry.

[2]  Lan Huang,et al.  Fus3-Regulated Tec1 Degradation through SCFCdc4 Determines MAPK Signaling Specificity during Mating in Yeast , 2004, Cell.

[3]  Mike Tyers,et al.  A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. , 2004, Biochimica et biophysica acta.

[4]  K. Jones,et al.  Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. , 2004, Molecular cell.

[5]  H. Cooper,et al.  Identification of sites of ubiquitination in proteins: a fourier transform ion cyclotron resonance mass spectrometry approach. , 2004, Analytical chemistry.

[6]  T. Kalashnikova,et al.  Regulation and Recognition of SCFGrr1 Targets in the Glucose and Amino Acid Signaling Pathways , 2004, Molecular and Cellular Biology.

[7]  K. Nakayama,et al.  Phosphorylation‐dependent degradation of c‐Myc is mediated by the F‐box protein Fbw7 , 2004, The EMBO journal.

[8]  B. Clurman,et al.  The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Yi Tang,et al.  Smad4 Protein Stability Is Regulated by Ubiquitin Ligase SCFβ-TrCP1* , 2004, Journal of Biological Chemistry.

[10]  Hiroyuki Osada,et al.  M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Behrens,et al.  The Ubiquitin Ligase SCFFbw7 Antagonizes Apoptotic JNK Signaling , 2004, Science.

[12]  L. Alberghina,et al.  Mutations of the CK2 phosphorylation site of Sic1 affect cell size and S‐Cdk kinase activity in Saccharomyces cerevisiae , 2004, Molecular microbiology.

[13]  K. Shokat,et al.  Targets of the cyclin-dependent kinase Cdk1 , 2003, Nature.

[14]  Tony Pawson,et al.  Mathematical Modeling Suggests Cooperative Interactions between a Disordered Polyvalent Ligand and a Single Receptor Site , 2003, Current Biology.

[15]  James M. Roberts,et al.  Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. , 2003, Molecular cell.

[16]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[17]  Geng Wu,et al.  Structure of a -TrCP1-Skp1--Catenin Complex , 2003 .

[18]  P. Jackson,et al.  Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. , 2003, Developmental cell.

[19]  M. Tyers,et al.  Structural Basis for Phosphodependent Substrate Selection and Orientation by the SCFCdc4 Ubiquitin Ligase , 2003, Cell.

[20]  R. Hay,et al.  βTrCP-Mediated Proteolysis of NF-κB1 p105 Requires Phosphorylation of p105 Serines 927 and 932 , 2003, Molecular and Cellular Biology.

[21]  M. Tyers,et al.  Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. , 2002, Molecular cell.

[22]  C. Berset,et al.  Transferable Domain in the G1 Cyclin Cln2 Sufficient To Switch Degradation of Sic1 from the E3 Ubiquitin Ligase SCFCdc4 to SCFGrr1 , 2002, Molecular and Cellular Biology.

[23]  S. Elledge,et al.  Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex , 2002, Nature.

[24]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[25]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[26]  Tony Pawson,et al.  Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication , 2001, Nature.

[27]  S. Reed,et al.  Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line , 2001, Nature.

[28]  L. Drury,et al.  Separate SCFCDC4 recognition elements target Cdc6 for proteolysis in S phase and mitosis , 2001, The EMBO journal.

[29]  S. Elledge,et al.  Phosphorylation-Dependent Ubiquitination of Cyclin E by the SCFFbw7 Ubiquitin Ligase , 2001, Science.

[30]  R. Young,et al.  Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. , 2001, Genes & development.

[31]  Tsonwin Hai,et al.  ATF4 Degradation Relies on a Phosphorylation-Dependent Interaction with the SCFβTrCPUbiquitin Ligase , 2001, Molecular and Cellular Biology.

[32]  H Strohmaier,et al.  A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. , 2001, Molecular cell.

[33]  Brett Larsen,et al.  The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27 , 2001, Nature Cell Biology.

[34]  C. Pickart,et al.  Mechanisms underlying ubiquitination. , 2001, Annual review of biochemistry.

[35]  C Longaretti,et al.  Nuclear‐specific degradation of Far1 is controlled by the localization of the F‐box protein Cdc4 , 2000, The EMBO journal.

[36]  Alexander Varshavsky,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[37]  J. Boeke,et al.  A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  G. Fink,et al.  Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. , 2000, Molecular biology of the cell.

[39]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[40]  Hong Sun,et al.  p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27 , 1999, Current Biology.

[41]  K Nasmyth,et al.  Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. , 1999, Genes & development.

[42]  S. Elledge,et al.  Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. , 1999, Science.

[43]  R. Benarous,et al.  The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell , 1999, Current Biology.

[44]  R. Deshaies SCF and Cullin/Ring H2-based ubiquitin ligases. , 1999, Annual review of cell and developmental biology.

[45]  M. Mann,et al.  Identification of the receptor component of the IκBα–ubiquitin ligase , 1998, Nature.

[46]  B. Futcher,et al.  Yeast G1 cyclins are unstable in G1 phase , 1998, Nature.

[47]  A. Toh-E,et al.  Phosphorylation of sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its prompt degradation. , 1998, Molecular biology of the cell.

[48]  M. Tyers,et al.  Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. , 1998, Trends in genetics : TIG.

[49]  D. Thomas,et al.  A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. , 1998, Molecular cell.

[50]  M. Tyers,et al.  Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box proteincomplexes that regulate cell division and methionine biosynthesis in yeast. , 1998, Genes & development.

[51]  I. Herskowitz,et al.  Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. , 1997, Genes & development.

[52]  S. Carr,et al.  Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. , 1997, Science.

[53]  Mike Tyers,et al.  F-Box Proteins Are Receptors that Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex , 1997, Cell.

[54]  R. Deshaies,et al.  A Complex of Cdc4p, Skp1p, and Cdc53p/Cullin Catalyzes Ubiquitination of the Phosphorylated CDK Inhibitor Sic1p , 1997, Cell.

[55]  J. Wehland,et al.  A novel proline‐rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family , 1997, The EMBO journal.

[56]  Mike Tyers,et al.  Cdc53 Targets Phosphorylated G1 Cyclins for Degradation by the Ubiquitin Proteolytic Pathway , 1996, Cell.

[57]  Stephen J. Elledge,et al.  SKP1 Connects Cell Cycle Regulators to the Ubiquitin Proteolysis Machinery through a Novel Motif, the F-Box , 1996, Cell.

[58]  J. Wehland,et al.  Neutralizing monoclonal antibodies against listeriolysin: mapping of epitopes involved in pore formation , 1996, Infection and immunity.

[59]  Tony Pawson,et al.  Protein modules and signalling networks , 1995, Nature.

[60]  L. Cantley,et al.  SH2 domain specificity determination using oriented phosphopeptide library. , 1995, Methods in enzymology.

[61]  R. Frank Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support , 1992 .

[62]  A. Varshavsky Naming a targeting signal , 1991, Cell.

[63]  A. Ciechanover,et al.  Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. , 1983, The Journal of biological chemistry.

[64]  G. Fink,et al.  Methods in yeast genetics , 1979 .