Fluidized‐Bed Reactors

The article contains sections titled: 1. Introduction 1.1. The Fluidization Principle 1.2. Forms of Fluidized Beds 1.3. Advantages and Disadvantages of the Fluidized-Bed Reactor 2. Fluid-Mechanical Principles 2.1. Minimum Fluidization Velocity 2.2. Expansion of Liquid–Solid Fluidized Beds 2.3. Fluidization Properties of Typical Bed Solids 2.4. State Diagram of Fluidized Bed 2.5. Gas Distribution 2.6. Gas Jets in Fluidized Beds 2.7. Bubble Development 2.8. Elutriation 2.9. Circulating Fluidized Beds 2.9.1. Hydrodynamic Principles 2.9.2. Local Flow Structure in Circulating Fluidized Beds 2.9.3. Design of Solids Recycle System 2.10. Cocurrent Downflow Circulating Fluidized Beds (Downers) 2.11. Attrition of Solids 3. Solids Mixing in Fluidized-Bed Reactors 3.1. Mechanisms of Solids Mixing 3.2. Vertical Mixing of Solids 3.3. Horizontal Mixing of Solids 3.4. Solids Residence-Time Properties 3.5. Solids Mixing in Circulating Fluidized Beds 4. Gas Mixing in Fluidized-Bed Reactors 4.1. Gas Mixing in Bubbling Fluidized Beds 4.2. Gas Mixing in Circulating Fluidized Beds 5. Heat and Mass Transfer in Fluidized-Bed Reactors 6. Gas–Solid Separation 7. Injection of Liquid Reactants into Fluidized Beds 8. Industrial Applications 8.1. Heterogeneous Catalytic Gas-Phase Reactions 8.2. Polymerization of Olefins 8.3. Homogeneous Gas-Phase Reactions 8.4. Gas–Solid Reactions 8.5. Applications in Biotechnology 9. Modeling of Fluidized-Bed Reactors 9.1. Modeling of Liquid–Solid Fluidized-Bed Reactors 9.2. Modeling of Gas–Solid Fluidized-Bed Reactors 9.2.1. Bubbling Fluidized-Bed Reactors 9.2.2. Circulating Fluidized-Bed Reactors 9.3. Newer Developments in Modeling Fluidized-Bed Reactors 9.3.1 Computational Fluid Dynamics 9.3.2 Modeling of Fluidized-Bed Systems 10. Scale-up The article gives an overview on fundamentals and applications of fluidized-bed technology. Some basic fluid-mechanical principles—minimum fluidization velocity, status diagram, gas distribution, bubble development, and solids entrainment and elutriation—are presented at the beginning, followed by a detailed discussion of circulating fluidized beds, downers, and attrition effects in fluidized-bed systems. Sections on solids mixing, gas mixing, and heat and mass transfer in fluidized beds complete the fundamentals section, which is followed by an overview on industrial applications. Fluidized-bed processes for heterogeneous catalytic gas-phase reactions, for the polymerization of olefins, for homogenous gas-phase reactions, gas–solid reactions and applications in biotechnology are described in detail. A final chapter is devoted to the modeling of fluidized-bed reactors.

[1]  Klaus Golbig,et al.  Selective synthesis of maleic anhydride by spatial separation of n-butane oxidation and catalyst reoxidation , 1997 .

[2]  John M. Matsen,et al.  Mechanisms of choking and entrainment , 1982 .

[3]  A. P. Baskakov,et al.  Radiative heat transfer in circulating fluidized bed furnaces , 1997 .

[4]  O. Levenspiel,et al.  An experimental method to determine the heat transfer coefficient between fine fluidized particles and air via changes in magnetic properties , 1989 .

[5]  Joachim Werther,et al.  Axial pressure profiles and solids concentration distributions in the CFB bottom zone , 1999 .

[6]  J. Werther,et al.  Fluid dynamics of the supercritical fluidized bed , 2005 .

[7]  Andre Peter Steynberg,et al.  High temperature Fischer–Tropsch synthesis in commercial practice , 1999 .

[8]  J. E. Gwyn On the particle size distribution function and the attrition of cracking catalysts , 1969 .

[9]  L. Reh Calcination von Aluminiumhydroxid in einer zirkulierenden Wirbelschicht , 1970 .

[10]  C. Fumagalli,et al.  Fluidized Bed Oxidation of n-Butane: A New Commercial Process for Maleic Anhydride , 1990 .

[11]  K. Schügerl,et al.  Biofluidization: Application of the fluidization technique in biotechnology , 1989 .

[12]  J. Werther,et al.  A population balance model of the particle inventory in a fluidized-bed reactor/regenerator system , 2004 .

[13]  S. Morooka,et al.  Transport Phenomena and Reaction in Fluidized Catalyst Beds , 1981 .

[14]  J. Werther,et al.  A novel method for the investigation of particle mixing in gas-solid systems , 1986 .

[15]  T. M. Knowlton,et al.  NONMECHANICAL SOLIDS FEED AND RECYCLE DEVICES FOR CIRCULATING FLUIDIZED BEDS , 1988 .

[16]  Wei Ge,et al.  Multi-scale compromise and multi-level correlation in complex systems , 2005 .

[17]  O. Molerus,et al.  Interpretation of Geldart's type A, B, C and D powders by taking into account interparticle cohesion forces , 1982 .

[18]  Joachim Werther,et al.  The role of mixing in the performance of CFB reactors , 1999 .

[19]  C. Wen,et al.  A generalized method for predicting the minimum fluidization velocity , 1966 .

[20]  Hsiaotao Bi,et al.  Situating the high‐density circulating fluidized bed , 1999 .

[21]  M. J. Mummey,et al.  Butane Oxidation in A Transport Bed Reactor – Redox Characteristics of The Vanadium Phosphorus Oxide Catalyst , 1990 .

[22]  Jinghai Li,et al.  Physical mapping of fluidization regimes—the EMMS approach , 2002 .

[23]  J. Werther,et al.  Factors affecting solids segregation in circulating fluidized‐bed riser , 1998 .

[24]  H. A. Lauwerier,et al.  Diffusion in a Fluid Moving at Uniform Velocity in a Tube , 1953 .

[25]  R. Grasselli,et al.  Oxidation and Ammoxidation of Propylene over Bismuth Molybdate Catalyst , 1970 .

[26]  Fei Wei,et al.  Solids mixing in a down-flow circulating fluidized bed of 0.418-m in diameter , 2006 .

[27]  Joachim Werther,et al.  An investigation of the mechanism of liquid injection into fluidized beds , 2005 .

[28]  John R. Grace,et al.  Reactor modeling for high-velocity fluidized beds , 1997 .

[29]  L. H. Chen,et al.  Fluidized bed freeboard phenomena: Entrainment and elutriation , 1982 .

[30]  J. Werther,et al.  Sewage sludge combustion , 1999 .

[31]  H. Beyenal,et al.  Prediction of substrate consumption rate, average biofilm density and active thickness for a thin spherical biofilm at pseudo-steady state , 1998 .

[32]  David W. Bacon,et al.  Gas Phase Ethylene Polymerization: Production Processes, Polymer Properties, and Reactor Modeling , 1994 .

[33]  Octave Levenspiel,et al.  Entrainment of solids from fluidized beds I. Hold-up of solids in the freeboard II. Operation of fast fluidized beds , 1990 .

[34]  J. Werther,et al.  Gas-solids mixing and flow structure modeling of the upper dilute zone of a circulating fluidized bed , 1995 .

[35]  Cedric Briens,et al.  Digital X-ray Imaging Technique to Study the Horizontal Injection of Gas-Liquid Jets into Fluidized Beds , 2003 .

[36]  Joachim Werther,et al.  Jet attrition of catalyst particles in gas fluidized beds , 1993 .

[37]  P. Griffith,et al.  Modeling the Injection of Gas-Liquid Jets into Fluidized Beds of Fine Particles , 2008 .

[38]  J.A.M. Kuipers,et al.  Computational fluid dynamics for dense gas–solid fluidized beds: a multi-scale modeling strategy , 2004 .

[39]  J. Werther,et al.  Modeling of Industrial Fluidized-Bed Reactors , 2004 .

[40]  L. Reh Auswahlkriterien für nichtkatalytische Gas/Feststoff-Hochtemperaturreaktoren† , 1977 .

[41]  A. Avidan,et al.  Conversion model aids scale-up of mobil's fluid-bed MTG process , 1986 .

[42]  J. Werther Strömungsmechanische Grundlagen der Wirbelschichttechnik , 1977 .

[43]  J. J. Heijnen Technik der anaeroben Abwasserreinigung , 1984 .

[44]  F. Wei,et al.  The near wall dense ring in a large-scale down-flow circulating fluidized bed , 2003 .

[45]  Qiang Zhang,et al.  Downer Catalytic Pyrolysis (DCP): A Novel Process for Light Olefins Production , 2002 .

[46]  J. Werther,et al.  3-D Modeling of Liquid Injection into Fluidized Beds , 2004 .

[47]  J. Werther,et al.  Influence of temperature and properties of solids on the size and growth of bubbles in gas fluidized beds , 1987 .

[48]  Joachim Werther,et al.  Find the optimum cyclone size with respect to the fines in pneumatic conveying systems , 2000 .

[49]  J. Werther,et al.  Horizontal Reactant Injection into Large‐Scale Fluidized Bed Reactors – Modeling of Secondary Air Injection into a Circulating Fluidized Bed Combustor , 1999 .

[50]  J. Werther,et al.  Radial gas mixing in the upper dilute core of a circulating fluidized bed , 1992 .

[51]  John R. Grace,et al.  Effect of bubble interaction on interphase mass transfer in gas fluidized beds , 1981 .

[52]  J. Botterill,et al.  Factors affecting heat transfer between gas-fluidized beds and immersed surfaces , 1984 .

[53]  D. Geldart Types of gas fluidization , 1973 .

[54]  K.-E. Wirth,et al.  Characterization of the flow pattern in a downer reactor , 1999 .

[55]  D. Geldart,et al.  THE HYDRODYNAMICS OF RE-CIRCULATING FLUIDIZED BEDS , 1986 .

[56]  F. Wei,et al.  Gas mixing in the cocurrent downflow circulating fluidised bed , 1995 .

[57]  W. Bauer A comparison between a conventional submerged culture fermenter and a new concept gas/solid fluid bed bioreactor for glutathione production , 1986 .

[58]  Joachim Werther,et al.  Scale-up modeling for fluidized bed reactors , 1992 .

[59]  F. Karol Studies with High Activity Catalysts for Olefin Polymerization , 1984, Catalysis and Surface Science.

[60]  Mohammad Asif,et al.  Generalized Richardson‐Zaki Correlation for Liquid Fluidization of Binary Solids , 1998 .

[61]  Jamal Chaouki,et al.  Modeling the catalytic oxidation of n-butane to maleic anhydride in a circulating fluidized bed reactor , 1992 .

[62]  Ying Zheng,et al.  (Gas‐)liquid‐solid circulating fluidized beds and their potential applications to bioreactor engineering , 2000 .

[63]  Joachim Werther,et al.  Catalyst attrition in cyclones , 2000 .

[64]  Mooson Kwauk,et al.  The Dynamics of Fast Fluidization , 1980 .

[65]  J. Werther,et al.  Solids mixing in the bottom zone of a circulating fluidized bed , 2001 .

[66]  O. E. Potter,et al.  Ozone decomposition in a 0.254 m diameter circulating fluidized bed reactor , 1993 .

[67]  J. Baeyens,et al.  Elutriation of fines from gas fluidized beds: mechanisms of elutriation and effect of freeboard geometry , 1997 .

[68]  Strömungs‐ und Austauschverhalten von Wirbelschichten , 1974 .

[69]  Joachim Werther Grundlagen der Wirbelschichttechnik , 1982 .

[70]  R. Contractor,et al.  Dupont's CFB technology for maleic anhydride , 1999 .

[71]  C.M.H. Brereton,et al.  AXIAL GAS MIXING IN A CIRCULATING FLUIDIZED BED , 1988 .

[72]  R. Shinnar Chemical Reactor Modeling—The Desirable and the Achievable , 1978 .

[73]  Joachim Werther,et al.  Time-dependent behavior of the ash particle size distribution in a circulating fluidized bed system , 2005 .

[74]  H. Brust,et al.  Residence Time Behavior of Gas in a Downer Reactor , 2004 .

[75]  Wei Ge,et al.  CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient , 2003 .

[76]  J. M. D. Merry,et al.  Penetration of vertical jets into fluidized beds , 1975 .

[77]  Leon R. Glicksman,et al.  Heat transfer in circulating fluidized beds , 1997 .