Implications of streamlining theory for microbial ecology

Whether a small cell, a small genome or a minimal set of chemical reactions with self-replicating properties, simplicity is beguiling. As Leonardo da Vinci reportedly said, ‘simplicity is the ultimate sophistication’. Two diverging views of simplicity have emerged in accounts of symbiotic and commensal bacteria and cosmopolitan free-living bacteria with small genomes. The small genomes of obligate insect endosymbionts have been attributed to genetic drift caused by small effective population sizes (Ne). In contrast, streamlining theory attributes small cells and genomes to selection for efficient use of nutrients in populations where Ne is large and nutrients limit growth. Regardless of the cause of genome reduction, lost coding potential eventually dictates loss of function. Consequences of reductive evolution in streamlined organisms include atypical patterns of prototrophy and the absence of common regulatory systems, which have been linked to difficulty in culturing these cells. Recent evidence from metagenomics suggests that streamlining is commonplace, may broadly explain the phenomenon of the uncultured microbial majority, and might also explain the highly interdependent (connected) behavior of many microbial ecosystems. Streamlining theory is belied by the observation that many successful bacteria are large cells with complex genomes. To fully appreciate streamlining, we must look to the life histories and adaptive strategies of cells, which impose minimum requirements for complexity that vary with niche.

[1]  Manesh Shah,et al.  Environmental proteomics of microbial plankton in a highly productive coastal upwelling system , 2011, The ISME Journal.

[2]  Janet M. Thornton,et al.  Microeconomic Principles Explain an Optimal Genome Size in Bacteria , 2004, Spanish Bioinformatics Conference.

[3]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[4]  R. Breaker,et al.  Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. , 2009, Environmental microbiology.

[5]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[6]  Frédéric Partensky,et al.  Accelerated evolution associated with genome reduction in a free-living prokaryote , 2005, Genome Biology.

[7]  S. Sørensen,et al.  Quantitative Metagenomic Analyses Based on Average Genome Size Normalization , 2011, Applied and Environmental Microbiology.

[8]  S. Lory,et al.  Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Scott A Givan,et al.  Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data , 2007, Biology Direct.

[10]  Niels W. Hanson,et al.  Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean , 2013, Proceedings of the National Academy of Sciences.

[11]  R. Olson,et al.  Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b , 1992, Archives of Microbiology.

[12]  J. Grzymski,et al.  The significance of nitrogen cost minimization in proteomes of marine microorganisms , 2011, The ISME Journal.

[13]  Daniel Patrick Smith,et al.  Energy Starved Candidatus Pelagibacter Ubique Substitutes Light-Mediated ATP Production for Endogenous Carbon Respiration , 2011, PloS one.

[14]  S. Giovannoni,et al.  High intraspecific recombination rate in a native population of Candidatus pelagibacter ubique (SAR11). , 2007, Environmental microbiology.

[15]  G. Storz,et al.  Regulatory RNAs in Bacteria , 2009, Cell.

[16]  M. Keller,et al.  Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean's Surface , 2011, PloS one.

[17]  S. Giovannoni,et al.  Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean , 2013 .

[18]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .

[19]  B. Robertson,et al.  Determination of DNA Content of Aquatic Bacteria by Flow Cytometry , 2001, Applied and Environmental Microbiology.

[20]  W. Winkler,et al.  Expanding roles for metabolite-sensing regulatory RNAs. , 2009, Current opinion in microbiology.

[21]  Andreas Wagner,et al.  Growth Temperature and Genome Size in Bacteria Are Negatively Correlated, Suggesting Genomic Streamlining During Thermal Adaptation , 2013, Genome biology and evolution.

[22]  T. Schmidt,et al.  rRNA Operon Copy Number Reflects Ecological Strategies of Bacteria , 2000, Applied and Environmental Microbiology.

[23]  Alfonso Valencia,et al.  Reductive genome evolution in Buchnera aphidicola , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Konstantinos T. Konstantinidis,et al.  Metagenomic Insights into the Evolution, Function, and Complexity of the Planktonic Microbial Community of Lake Lanier, a Temperate Freshwater Ecosystem , 2011, Applied and Environmental Microbiology.

[25]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[26]  S. Giovannoni,et al.  The small genome of an abundant coastal ocean methylotroph. , 2008, Environmental microbiology.

[27]  Doug Hyatt,et al.  Enigmatic, ultrasmall, uncultivated Archaea , 2010, Proceedings of the National Academy of Sciences.

[28]  F. Kramer,et al.  Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis , 1999, Molecular microbiology.

[29]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[30]  Ruben E. Valas,et al.  Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage , 2011, The ISME Journal.

[31]  S. Giovannoni,et al.  Cultivation of the ubiquitous SAR11 marine bacterioplankton clade , 2002, Nature.

[32]  W. Doolittle,et al.  Selfish genes, the phenotype paradigm and genome evolution , 1980, Nature.

[33]  D. Button Nutrient Uptake by Microorganisms according to Kinetic Parameters from Theory as Related to Cytoarchitecture , 1998, Microbiology and Molecular Biology Reviews.

[34]  S. Giovannoni,et al.  Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium , 2012, The ISME Journal.

[35]  C. Fraser,et al.  The Bacterial Species Challenge: Making Sense of Genetic and Ecological Diversity , 2009, Science.

[36]  Matthew Z. DeMaere,et al.  The genomic basis of trophic strategy in marine bacteria , 2009, Proceedings of the National Academy of Sciences.

[37]  M. Touchon,et al.  No evidence for elemental-based streamlining of prokaryotic genomes. , 2010, Trends in ecology & evolution.

[38]  Les Dethlefsen,et al.  Performance of the Translational Apparatus Varies with the Ecological Strategies of Bacteria , 2007, Journal of bacteriology.

[39]  F. Crick,et al.  Selfish DNA: the ultimate parasite , 1980, Nature.

[40]  P. Bork,et al.  Prediction of effective genome size in metagenomic samples , 2007, Genome Biology.

[41]  S. Giovannoni,et al.  Discovery of a SAR11 growth requirement for thiamin’s pyrimidine precursor and its distribution in the Sargasso Sea , 2014, The ISME Journal.

[42]  Brian C. Thomas,et al.  Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla , 2012, Science.

[43]  Li C. Xia,et al.  Accurate Genome Relative Abundance Estimation Based on Shotgun Metagenomic Reads , 2011, PloS one.

[44]  Purificación López-García,et al.  Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara , 2010, The ISME Journal.

[45]  L. Øvreås,et al.  Use of non‐limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? , 2005 .

[46]  E. Koonin,et al.  Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world , 2008, Nucleic acids research.

[47]  S. Giovannoni,et al.  SAR11 marine bacteria require exogenous reduced sulphur for growth , 2008, Nature.

[48]  Manesh Shah,et al.  Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation , 2003, Nature.

[49]  M. Madan Babu Did the loss of sigma factors initiate pseudogene accumulation in M. leprae? , 2003, Trends in microbiology.

[50]  S. Giovannoni,et al.  Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. , 2006, Environmental microbiology.

[51]  R. Burton,et al.  Seasonality and vertical structure of microbial communities in an ocean gyre , 2009, The ISME Journal.

[52]  F. Partensky,et al.  Prochlorococcus: advantages and limits of minimalism. , 2010, Annual review of marine science.

[53]  Forest Rohwer,et al.  The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial Average Genome Size in Four Major Biomes , 2009, PLoS Comput. Biol..

[54]  Zasha Weinberg,et al.  Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique' , 2009, BMC Genomics.

[55]  N. Moran,et al.  Extreme genome reduction in symbiotic bacteria , 2011, Nature Reviews Microbiology.

[56]  S. Giovannoni,et al.  Streamlining and Core Genome Conservation among Highly Divergent Members of the SAR11 Clade , 2012, mBio.

[57]  William A. Siebold,et al.  SAR11 clade dominates ocean surface bacterioplankton communities , 2002, Nature.

[58]  Sallie W. Chisholm,et al.  Resolution of Prochlorococcus and Synechococcus Ecotypes by Using 16S-23S Ribosomal DNA Internal Transcribed Spacer Sequences , 2002, Applied and Environmental Microbiology.

[59]  Richard D. Smith,et al.  Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea , 2009, The ISME Journal.

[60]  Howard Ochman,et al.  The consequences of genetic drift for bacterial genome complexity. , 2009, Genome research.

[61]  R. Stepanauskas,et al.  Productivity and salinity structuring of the microplankton revealed by comparative freshwater metagenomics , 2013, Environmental microbiology.

[62]  Michael S. Schwalbach,et al.  Transcriptional and Translational Regulatory Responses to Iron Limitation in the Globally Distributed Marine Bacterium Candidatus Pelagibacter ubique , 2010, PloS one.

[63]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[64]  Daniel Patrick Smith,et al.  One Carbon Metabolism in SAR11 Pelagic Marine Bacteria , 2011, PloS one.

[65]  R. Lenski,et al.  The Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss , 2012, mBio.

[66]  A. Eiler,et al.  Dynamics of the SAR11 bacterioplankton lineage in relation to environmental conditions in the oligotrophic North Pacific subtropical gyre. , 2009, Environmental microbiology.

[67]  Feng Chen,et al.  Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus , 2007, PLoS genetics.

[68]  P. Nightingale,et al.  Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source , 2011 .

[69]  F. Rodríguez-Valera,et al.  Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria , 2013, Scientific Reports.

[70]  D. Button Biochemical Basis for Whole-Cell Uptake Kinetics: Specific Affinity, Oligotrophic Capacity, and the Meaning of the Michaelis Constant , 1991, Applied and environmental microbiology.

[71]  Richard D. Smith,et al.  Proteomic and Transcriptomic Analyses of “Candidatus Pelagibacter ubique” Describe the First PII-Independent Response to Nitrogen Limitation in a Free-Living Alphaproteobacterium , 2013, mBio.

[72]  Eduardo P. C. Rocha,et al.  The Systemic Imprint of Growth and Its Uses in Ecological (Meta)Genomics , 2010, PLoS genetics.

[73]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[74]  Eduardo P C Rocha,et al.  Causes of insertion sequences abundance in prokaryotic genomes. , 2007, Molecular biology and evolution.

[75]  M. Lynch Streamlining and simplification of microbial genome architecture. , 2006, Annual review of microbiology.

[76]  R. Amann,et al.  Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. , 2009, Environmental microbiology.

[77]  S. Giovannoni,et al.  Genetic diversity in Sargasso Sea bacterioplankton , 1990, Nature.

[78]  S. Giovannoni,et al.  Synergistic metabolism of a broad range of C1 compounds in the marine methylotrophic bacterium HTCC2181. , 2012, Environmental microbiology.

[79]  S. Giovannoni,et al.  Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea , 2009, The ISME Journal.

[80]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[81]  Andrés Moya,et al.  Toward minimal bacterial cells: evolution vs. design , 2008, FEMS microbiology reviews.

[82]  N. Moran,et al.  Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.

[83]  M. Asayama,et al.  Cooperation of group 2 σ factors, SigD and SigE for light‐induced transcription in the cyanobacterium Synechocystis sp. PCC 6803 , 2007, FEBS letters.

[84]  M. Wösten Eubacterial sigma-factors. , 1998, FEMS microbiology reviews.

[85]  Brian C. Thomas,et al.  Small Genomes and Sparse Metabolisms of Sediment-Associated Bacteria from Four Candidate Phyla , 2013, mBio.