IGA: A Simplified Introduction and Implementation Details for Finite Element Users

Isogeometric analysis (IGA) is a recently introduced technique that employs the Computer Aided Design (CAD) concept of Non-uniform Rational B-splines (NURBS) tool to bridge the substantial bottleneck between the CAD and finite element analysis (FEA) fields. The simplified transition of exact CAD models into the analysis alleviates the issues originating from geometrical discontinuities and thus, significantly reduces the design-to-analysis time in comparison to traditional FEA technique. Since its origination, the research in the field of IGA is accelerating and has been applied to various problems. However, the employment of CAD tools in the area of FEA invokes the need of adapting the existing implementation procedure for the framework of IGA. Also, the usage of IGA requires the in-depth knowledge of both the CAD and FEA fields. This can be overwhelming for a beginner in IGA. Hence, in this paper, a simplified introduction and implementation details for the incorporation of NURBS based IGA technique within the existing FEA code is presented. It is shown that with little modifications, the available standard code structure of FEA can be adapted for IGA. For the clear and concise explanation of these modifications, step-by-step implementation of a benchmark plate with a circular hole under the action of in-plane tension is included.

[1]  Daniel Rypl,et al.  From the finite element analysis to the isogeometric analysis in an object oriented computing environment , 2012, Adv. Eng. Softw..

[2]  T. Belytschko,et al.  X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .

[3]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[4]  Vijaya Kumar Rayavarapu,et al.  Impact Behaviour of Soft Body Projectiles , 2018 .

[5]  Hari K. Voruganti,et al.  Static Structural and Modal Analysis Using Isogeometric Analysis , 2016 .

[6]  Sergei Khakalo,et al.  Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software , 2017, Comput. Aided Des..

[7]  Rafael Vázquez,et al.  A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0 , 2016, Comput. Math. Appl..

[8]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[9]  Vinh Phu Nguyen,et al.  Isogeometric analysis: An overview and computer implementation aspects , 2012, Math. Comput. Simul..

[10]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[11]  Apurba Das,et al.  First-ply Failure Analysis of Delaminated Rotating Composite Conical Shells: A Finite Element Approach , 2018 .

[12]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[13]  I. Singh,et al.  Numerical Simulation of 3D Thermo-Elastic Fatigue Crack Growth Problems Using Coupled FE-EFG Approach , 2017 .

[14]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[15]  Anath Fischer,et al.  New B‐Spline Finite Element approach for geometrical design and mechanical analysis , 1998 .

[16]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[17]  Anh-Vu Vuong,et al.  ISOGAT: A 2D tutorial MATLAB code for Isogeometric Analysis , 2010, Comput. Aided Geom. Des..

[18]  David J. Benson,et al.  Isogeometric Analysis with LS-DYNA , 2016 .

[19]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[20]  Vinh Phu Nguyen,et al.  Nitsche’s method for two and three dimensional NURBS patch coupling , 2013, 1308.0802.

[21]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[22]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[23]  Roger A. Sauer,et al.  NURBS-enriched contact finite elements , 2014 .

[24]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[25]  Peter Wriggers,et al.  Isogeometric contact: a review , 2014 .

[26]  Bert Jüttler,et al.  Geometry + Simulation Modules: Implementing Isogeometric Analysis , 2014 .

[27]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[28]  Lisandro Dalcin,et al.  PetIGA: High-Performance Isogeometric Analysis , 2013, ArXiv.

[29]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[30]  Uday S. Dixit,et al.  Finite Element Methods For Engineers , 2009 .

[31]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[32]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[33]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .