Polythiourethane composite film with high transparency, high refractive index and low dispersion containing ZnS nanoparticle via thiol-ene click chemistry

[1]  Y. Altowairqi,et al.  Enhancing the linear and nonlinear optical properties by ZnS/V-doped polyvinyl alcohol/carboxymethyl cellulose/polyethylene glycol polymeric nanocomposites for optoelectronic applications , 2022, Journal of Materials Science: Materials in Electronics.

[2]  M. Rodríguez-Pérez,et al.  Optical Properties of Polyisocyanurate–Polyurethane Aerogels: Study of the Scattering Mechanisms , 2022, Nanomaterials.

[3]  E. Gazit,et al.  Recent Advances in Organic and Organic–Inorganic Hybrid Materials for Piezoelectric Mechanical Energy Harvesting , 2022, Advanced Functional Materials.

[4]  Joseph J. Richardson,et al.  Synthesis of Dithiocatechol-Pendant Polymers. , 2022, Journal of the American Chemical Society.

[5]  Sadaki Samitsu,et al.  Highly transparent and photopatternable spirobifluorene-based polythioethers with high refractive indices via thiol-ene click chemistry , 2021 .

[6]  M. Podgórski,et al.  High Refractive Index Photopolymers by Thiol-Yne "Click" Polymerization. , 2021, ACS applied materials & interfaces.

[7]  Xinxin Li,et al.  A Simple Synthesis of Higher Refractive Index Polymeric Nanocomposite Containing the Pendant ZnS Nanocrystals Capping Different Amount of Mercaptoethanol , 2020, Journal of Nanomaterials.

[8]  Kazumi Kato,et al.  High refractive index and dielectric properties of BaTiO3 nanocube/polymer composite films , 2020, Journal of Nanoparticle Research.

[9]  K. Char,et al.  One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers , 2020, Science Advances.

[10]  S. Ifuku,et al.  Highly transparent and flexible surface modified chitin nanofibers reinforced poly (methyl methacrylate) nanocomposites: Mechanical, thermal and optical studies , 2020 .

[11]  Shengling Jiang,et al.  Preparation of Titanium-silphenylene-siloxane Hybrid Polymers with High Refractive Index, Transmittance, and Thermal Stability , 2020, Chinese Journal of Polymer Science.

[12]  Chao Duan,et al.  Sulfathiazole derivative with phosphaphenanthrene group: Synthesis, characterization and its high flame-retardant activity on epoxy resin , 2020 .

[13]  Jichao C. Li,et al.  High refractive index polythiourethane networks with high mechanical property via thiol-isocyanate click reaction , 2019, Polymer.

[14]  Gopinath Kasi,et al.  Optical, thermal, and structural properties of polyurethane in Mg-doped zinc oxide nanoparticles for antibacterial activity , 2019, Progress in Organic Coatings.

[15]  Y. Gal,et al.  High refractive index organic/inorganic hybrid films prepared by carbazole phenoxy based copolymers and titanium alkoxide , 2019, Molecular Crystals and Liquid Crystals.

[16]  Jiajia Wang,et al.  Intrinsic High Refractive Index Siloxane–Sulfide Polymer Networks Having High Thermostability and Transmittance via Thiol–Ene Cross-Linking Reaction , 2018, Macromolecules.

[17]  V. Nguyen,et al.  Optical Properties of Photopolymerized Thiol–Ene Polymers Fabricated Using Various Multivinyl Monomers , 2018, Industrial & Engineering Chemistry Research.

[18]  N. Hampp,et al.  High Refractive Index Polymers by Design , 2018 .

[19]  Jianfeng Chen,et al.  Synthesis of Transparent Aqueous ZrO2 Nanodispersion with a Controllable Crystalline Phase without Modification for a High-Refractive-Index Nanocomposite Film. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[20]  Fuquan Wang,et al.  Preparation and Properties of Halogen-Free Flame Retardant and High Refractive Index Optical Resin via Click Chemistry , 2018, Macromolecular Research.

[21]  Yiwen Li,et al.  "Click" chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. , 2018, Journal of controlled release : official journal of the Controlled Release Society.

[22]  Edward Anthony LaVilla,et al.  High Refractive Index Copolymers with Improved Thermomechanical Properties via the Inverse Vulcanization of Sulfur and 1,3,5-Triisopropenylbenzene. , 2016, ACS macro letters.

[23]  B. Ku,et al.  Synthesis and characterization of poly(cyclohexylthioacrylate) (PCTA) with high refractive index and low birefringence for optical applications , 2015, Macromolecular Research.

[24]  Laura E. Anderson,et al.  Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur for Healable Infrared Optical Materials. , 2015, ACS macro letters.

[25]  Mao-Chun Fu,et al.  Synthesis and characterization of poly(phenylene thioether)s containing pyrimidine units exhibiting high transparency, high refractive indices, and low birefringence , 2015 .

[26]  Qiuyu Zhang,et al.  Water-borne thiol–isocyanate click chemistry in microfluidics: rapid and energy-efficient preparation of uniform particles , 2015 .

[27]  R. Haag,et al.  Micro- and nanogels with labile crosslinks - from synthesis to biomedical applications. , 2015, Chemical Society reviews.

[28]  Tomoya Higashihara,et al.  Recent Progress in High Refractive Index Polymers , 2015 .

[29]  Mingyao Zhang,et al.  Environmental pH-responsive fluorescent PEG-polyurethane for potential optical imaging , 2013 .

[30]  Jeong Jae Wie,et al.  The use of elemental sulfur as an alternative feedstock for polymeric materials. , 2013, Nature chemistry.

[31]  Jie Yang,et al.  Synthesis of highly refractive and transparent poly(arylene sulfide sulfone) based on 4,6-dichloropyrimidine and 3,6-dichloropyridazine , 2013 .

[32]  C. Bowman,et al.  Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. , 2010, Chemical Society reviews.

[33]  Christopher N Bowman,et al.  Thiol-ene click chemistry. , 2010, Angewandte Chemie.

[34]  Jingang Liu,et al.  High refractive index polymers: fundamental research and practical applications , 2009 .

[35]  Tomoya Higashihara,et al.  Synthesis of highly refractive polyimides derived from 3,6‐bis(4‐aminophenylenesulfanyl)pyridazine and 4,6‐bis(4‐aminophenylenesulfanyl)pyrimidine , 2009 .

[36]  Bai Yang,et al.  High refractive index organic–inorganic nanocomposites: design, synthesis and application , 2009 .

[37]  Justin W. Chan,et al.  Segmented Polythiourethane Elastomers Through Sequential Thiol-ene and Thiol-isocyanate Reactions , 2009 .

[38]  P. Maji,et al.  Influence of number of functional groups of hyperbranched polyol on cure kinetics and physical properties of polyurethanes , 2009 .

[39]  G. De,et al.  In situ Generation of Au Nanoparticles in UV-curable Refractive Index Controlled SiO2−TiO2−PEO Hybrid Films , 2008 .

[40]  S. Park,et al.  Polarizing group attached acrylates and polymers viewing high refractive index , 2007 .

[41]  W. Shi,et al.  Synthesis and characterization of ZnS/hyperbranched polyester nanocomposite and its optical properties , 2007 .

[42]  J. E. Mark Some novel polymeric nanocomposites. , 2006, Accounts of chemical research.

[43]  Bai Yang,et al.  Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites , 2006 .

[44]  Bai Yang,et al.  Research on Preparation, Structure and Properties of TiO2/Polythiourethane Hybrid Optical Films with High Refractive Index , 2003 .

[45]  Bai Yang,et al.  High refractive index thin films of ZnS/polythiourethane nanocomposites , 2003 .

[46]  Karl-Heinz Haas,et al.  Hybrid Inorganic–Organic Polymers Based on Organically Modified Si-Alkoxides , 2000 .

[47]  Masahiro Yoshida,et al.  Optical material of high refractive index resin composed of sulfur‐containing aliphatic and alicyclic methacrylates , 2000 .

[48]  D. Sarma,et al.  Size-Selected Zinc Sulfide Nanocrystallites: Synthesis, Structure, and Optical Studies , 2000 .

[49]  R. Lakshmipathy,et al.  Synthesis of surface-functionalized ZnS nanoparticles and its potential application as methylene blue adsorbent , 2018 .

[50]  M. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions , 2001 .