SGLT2 Inhibitors and Their Mode of Action in Heart Failure—Has the Mystery Been Unravelled?

[1]  P. Light,et al.  Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/Glucose Cotransporter 2 Inhibitor Empagliflozin , 2021, Circulation.

[2]  G. Filippatos,et al.  Empagliflozin in Patients With Heart Failure, Reduced Ejection Fraction, and Volume Overload: EMPEROR-Reduced Trial. , 2021, Journal of the American College of Cardiology.

[3]  D. Newby,et al.  Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure , 2021, Heart.

[4]  Mark E. Anderson,et al.  Loss of CASK Accelerates Heart Failure Development , 2021, Circulation research.

[5]  S. Daskalopoulou,et al.  Systematic review and meta-analysis: SGLT2 inhibitors, blood pressure and cardiovascular outcomes , 2021, International journal of cardiology. Heart & vasculature.

[6]  M. Böhm,et al.  Empagliflozin does not change cardiac index nor systemic vascular resistance but rapidly improves left ventricular filling pressure in patients with type 2 diabetes: a randomized controlled study , 2021, Cardiovascular Diabetology.

[7]  S. Sossalla,et al.  A mechanistic rationale for the investigation of sodium–glucose co‐transporter 2 inhibitors in heart failure with preserved ejection fraction. Letter regarding the article ‘Baseline characteristics of patients with heart failure with preserved ejection fraction in the EMPEROR‐Preserved trial’ , 2020, European journal of heart failure.

[8]  M. Petrie,et al.  EMPEROR-REDUCED reigns while EMPERIAL whimpers. , 2020, European heart journal.

[9]  Akshay S. Desai,et al.  Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes. , 2020, European heart journal.

[10]  G. Filippatos,et al.  Efficacy and safety of SGLT2 inhibitors in heart failure: systematic review and meta‐analysis , 2020, ESC heart failure.

[11]  Deepak L. Bhatt,et al.  Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. , 2020, The New England journal of medicine.

[12]  Y. Jang,et al.  Randomized, Controlled Trial to Evaluate the Effect of Dapagliflozin on Left Ventricular Diastolic Function in Patients With Type 2 Diabetes Mellitus: The IDDIA Trial. , 2020, Circulation.

[13]  J. McMurray,et al.  Effect of Empagliflozin on Left Ventricular Volumes in Patients With Type 2 Diabetes, or Prediabetes, and Heart Failure With Reduced Ejection Fraction (SUGAR-DM-HF) , 2020, Circulation.

[14]  V. Fuster,et al.  Randomized Trial of Empagliflozin in Non-Diabetic Patients with Heart Failure and Reduced Ejection Fraction. , 2020, Journal of the American College of Cardiology.

[15]  M. Böhm,et al.  Empagliflozin does not change cardiac index nor systemic vascular resistance but rapidly improves left ventricular filling pressure in patients with type 2 diabetes: a randomized controlled study  , 2020 .

[16]  M. Shattock,et al.  Off-target effects of sodium-glucose co-transporter 2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart , 2020, Cardiovascular research.

[17]  B. Zinman,et al.  Cardiovascular outcomes and LDL-cholesterol levels in EMPA-REG OUTCOME® , 2020, Diabetes & vascular disease research.

[18]  P. Ponikowski,et al.  Effect of Empagliflozin on Cardiovascular and Renal Outcomes in Patients With Heart Failure by Baseline Diabetes Status , 2020, Circulation.

[19]  G. Hasenfuss,et al.  Long-term effects of empagliflozin on excitation-contraction-coupling in human induced pluripotent stem cell cardiomyocytes , 2020, Journal of Molecular Medicine.

[20]  J. McMurray,et al.  Dapagliflozin in Patients with Chronic Kidney Disease. , 2020, The New England journal of medicine.

[21]  L. Maier,et al.  Empagliflozin inhibits Na+/H+ exchanger activity in human atrial cardiomyocytes , 2020, ESC heart failure.

[22]  J. McMurray,et al.  The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics , 2020, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[23]  P. Ponikowski,et al.  Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. , 2020, The New England journal of medicine.

[24]  G. Filippatos,et al.  SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials , 2020, The Lancet.

[25]  J. Januzzi,et al.  Heart Failure With Reduced Ejection Fraction: A Review. , 2020, JAMA.

[26]  M. Packer Molecular, Cellular, and Clinical Evidence That Sodium‐Glucose Cotransporter 2 Inhibitors Act as Neurohormonal Antagonists When Used for the Treatment of Chronic Heart Failure , 2020, Journal of the American Heart Association.

[27]  A. Mügge,et al.  The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases , 2020, Biophysical Reviews.

[28]  C. Lang,et al.  A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial , 2020, European heart journal.

[29]  Y. Yoon,et al.  Different effects of SGLT2 inhibitors according to the presence and types of heart failure in type 2 diabetic patients , 2020, Cardiovascular Diabetology.

[30]  Jeffrey M. Turner,et al.  Empagliflozin in Heart Failure , 2020, Circulation.

[31]  L. Maier,et al.  Dantrolene reduces CaMKIIδC-mediated atrial arrhythmias. , 2020, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[32]  L. Maier,et al.  Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. , 2020, Cardiovascular research.

[33]  P. Boor,et al.  Empagliflozin improves left ventricular diastolic function of db/db mice. , 2020, Biochimica et biophysica acta. Molecular basis of disease.

[34]  P. Donnan,et al.  Dapagliflozin Versus Placebo on Left Ventricular Remodeling in Patients With Diabetes and Heart Failure: The REFORM Trial , 2020, Diabetes Care.

[35]  Akshay S. Desai,et al.  Effect of Dapagliflozin on Worsening Heart Failure and Cardiovascular Death in Patients With Heart Failure With and Without Diabetes. , 2020, JAMA.

[36]  Y. Aizawa,et al.  The Effect of Dapagliflozin Treatment on Epicardial Adipose Tissue Volume and P-Wave Indices: An Ad-hoc Analysis of The Previous Randomized Clinical Trial , 2020, Journal of atherosclerosis and thrombosis.

[37]  L. Maier,et al.  CaMKII and GLUT1 in heart failure and the role of gliflozins. , 2020, Biochimica et biophysica acta. Molecular basis of disease.

[38]  M. Packer Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium–glucose cotransporter 2 inhibitors , 2020, European journal of heart failure.

[39]  E. Braunwald,et al.  Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. , 2020, Journal of the American College of Cardiology.

[40]  C. Cannon,et al.  Sodium‐Glucose Cotransporter 2 Inhibition for the Prevention of Cardiovascular Events in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta‐Analysis , 2020, Journal of the American Heart Association.

[41]  A. Avogaro,et al.  Reinterpreting Cardiorenal Protection of Renal Sodium–Glucose Cotransporter 2 Inhibitors via Cellular Life History Programming , 2019, Diabetes Care.

[42]  T. Maruyama,et al.  Canagliflozin Improves Erythropoiesis in Diabetes Patients with Anemia of Chronic Kidney Disease , 2019, Diabetes technology & therapeutics.

[43]  Deepak L. Bhatt,et al.  Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. , 2019, Circulation.

[44]  Deepak L. Bhatt,et al.  Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. , 2019, Circulation.

[45]  D. DeMets,et al.  Efficacy and Safety of Dapagliflozin in Heart Failure With Reduced Ejection Fraction According to Age , 2019, Circulation.

[46]  Lawrence A Leiter,et al.  Effect of Empagliflozin on Erythropoietin Levels, Iron Stores and Red Blood Cell Morphology in Patients with Type 2 Diabetes and Coronary Artery Disease. , 2019, Circulation.

[47]  M. Su,et al.  Effect of Empagliflozin on Cardiac Function, Adiposity, and Diffuse Fibrosis in Patients with Type 2 Diabetes Mellitus , 2019, Scientific Reports.

[48]  Akshay S. Desai,et al.  Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. , 2019, The New England journal of medicine.

[49]  W. Paulus,et al.  Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin , 2019, JACC. Basic to translational science.

[50]  Liming Chen,et al.  Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice. , 2019, Clinical science.

[51]  M. Drazner,et al.  Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients With Heart Failure With Reduced Ejection Fraction: The DEFINE-HF Trial. , 2019, Circulation.

[52]  E. Briganti,et al.  Effects of empagliflozin treatment on cardiac function and structure in patients with type 2 diabetes: a cardiac magnetic resonance study , 2019, Internal medicine journal.

[53]  R. D. de Boer,et al.  Sodium–glucose co‐transporter 2 inhibition with empagliflozin improves cardiac function in non‐diabetic rats with left ventricular dysfunction after myocardial infarction , 2019, European journal of heart failure.

[54]  V. Fuster,et al.  Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. , 2019, Journal of the American College of Cardiology.

[55]  S. Goto,et al.  Possible Mechanism of Hematocrit Elevation by Sodium Glucose Cotransporter 2 Inhibitors and Associated Beneficial Renal and Cardiovascular Effects. , 2019, Circulation.

[56]  Fen Li,et al.  Dapagliflozin Attenuates Cardiac Remodeling in Mice Model of Cardiac Pressure Overload , 2019, American journal of hypertension.

[57]  C. Ronco,et al.  Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association. , 2019, Circulation.

[58]  Po-Len Liu,et al.  The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats , 2019, Cardiovascular Diabetology.

[59]  H. Bøtker,et al.  Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients , 2019, Circulation.

[60]  C. Bailey Uric acid and the cardio‐renal effects of SGLT2 inhibitors , 2019, Diabetes, obesity & metabolism.

[61]  S. Kaul,et al.  Empagliflozin reduces the risk of a broad spectrum of heart failure outcomes regardless of heart failure status at baseline , 2019, European journal of heart failure.

[62]  Liming Chen,et al.  SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart , 2019, Cardiovascular Diabetology.

[63]  K. Connelly,et al.  Empagliflozin Improves Diastolic Function in a Nondiabetic Rodent Model of Heart Failure With Preserved Ejection Fraction , 2019, JACC. Basic to translational science.

[64]  Declare–Timi Investigators Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes , 2019 .

[65]  Marc P. Bonaca,et al.  SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials , 2019, The Lancet.

[66]  B. Zinman,et al.  Empagliflozin Reduced Mortality and Hospitalization for Heart Failure Across the Spectrum of Cardiovascular Risk in the EMPA-REG OUTCOME Trial , 2018, Circulation.

[67]  S. Atkin,et al.  Sodium–glucose cotransporter inhibitors and oxidative stress: An update , 2018, Journal of cellular physiology.

[68]  J. Gummert,et al.  Empagliflozin directly improves diastolic function in human heart failure , 2018, European journal of heart failure.

[69]  K. Hirata,et al.  Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure , 2018, Cardiovascular Diabetology.

[70]  J. McMurray,et al.  SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review , 2018, Diabetologia.

[71]  Yong Xu,et al.  SGLT2 inhibitors and risk of stroke in patients with type 2 diabetes: A systematic review and meta‐analysis , 2018, Diabetes, obesity & metabolism.

[72]  L. Maier,et al.  Empagliflozin reduces Ca/calmodulin‐dependent kinase II activity in isolated ventricular cardiomyocytes , 2018, ESC heart failure.

[73]  Lawrence A Leiter,et al.  Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. , 2018, Metabolism: clinical and experimental.

[74]  J. Gummert,et al.  Differential regulation of sodium channels as a novel proarrhythmic mechanism in the human failing heart , 2018, Cardiovascular research.

[75]  Wei Wang,et al.  Canagliflozin exerts anti‐inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells , 2018, Biochemical pharmacology.

[76]  M. Packer Do sodium‐glucose co‐transporter‐2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis , 2018, Diabetes, obesity & metabolism.

[77]  M. Mizuno,et al.  Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts , 2018, Physiological reports.

[78]  K. Utsunomiya,et al.  Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes , 2018, Cardiovascular Diabetology.

[79]  J. Lee,et al.  The anti‐diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels , 2018, Life sciences.

[80]  J. McMurray,et al.  Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis , 2018, Diabetes, obesity & metabolism.

[81]  M. von Eynatten,et al.  Empagliflozin Induces Transient Diuresis Without Changing Long-Term Overall Fluid Balance in Japanese Patients With Type 2 Diabetes , 2018, Diabetes Therapy.

[82]  B. Zinman,et al.  Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial , 2018, European heart journal.

[83]  Dongli Tian,et al.  Effects of sodium‐glucose co‐transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta‐analysis of randomized controlled trials , 2018, Diabetes, obesity & metabolism.

[84]  R. Guthrie Canagliflozin and cardiovascular and renal events in type 2 diabetes , 2018, Postgraduate medicine.

[85]  B. Zinman,et al.  Empagliflozin and Clinical Outcomes in Patients With Type 2 Diabetes Mellitus, Established Cardiovascular Disease, and Chronic Kidney Disease , 2018, Circulation.

[86]  Y. Aizawa,et al.  The effect of dapagliflozin treatment on epicardial adipose tissue volume , 2018, Cardiovascular Diabetology.

[87]  R. Coronel,et al.  Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation , 2017, Diabetologia.

[88]  B. Zinman,et al.  How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial , 2017, Diabetes Care.

[89]  S. Verma,et al.  Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease , 2017, Heart Failure Reviews.

[90]  L. Ghiadoni,et al.  Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study , 2017, Cardiovascular Diabetology.

[91]  D. Fitchett,et al.  EMPAGLIFLOZIN (EMPA) REDUCES HEART FAILURE OUTCOMES IRRESPECTIVE OF BLOOD PRESSURE (BP), LOW DENSITY LIPOPROTEIN CHOLESTEROL (LDL-C) AND HBA1C CONTROL , 2017 .

[92]  S. Zecchi-Orlandini,et al.  Sodium-dependent glucose transporters (SGLT) in human ischemic heart: A new potential pharmacological target. , 2017, International journal of cardiology.

[93]  J. Adamski,et al.  Effect of Empagliflozin on the Metabolic Signature of Patients With Type 2 Diabetes Mellitus and Cardiovascular Disease. , 2017, Circulation.

[94]  J. McMurray,et al.  The Metabolodiuretic Promise of Sodium-Dependent Glucose Cotransporter 2 Inhibition: The Search for the Sweet Spot in Heart Failure. , 2017, JAMA cardiology.

[95]  S. Verma,et al.  Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure , 2017, JACC. Basic to translational science.

[96]  L. Maier,et al.  CaMKII as a target for arrhythmia suppression. , 2017, Pharmacology & therapeutics.

[97]  K. Mahaffey,et al.  Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes , 2017, The New England journal of medicine.

[98]  M. Komajda,et al.  Empagliflozin Improves Left Ventricular Diastolic Dysfunction in a Genetic Model of Type 2 Diabetes , 2017, Cardiovascular Drugs and Therapy.

[99]  J. Perez-polo,et al.  SGLT-2 Inhibition with Dapagliflozin Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Cardiomyopathy in Mice with Type 2 Diabetes. Further Augmentation of the Effects with Saxagliptin, a DPP4 Inhibitor , 2017, Cardiovascular Drugs and Therapy.

[100]  E. Ferrannini,et al.  Renal Handling of Ketones in Response to Sodium–Glucose Cotransporter 2 Inhibition in Patients With Type 2 Diabetes , 2017, Diabetes Care.

[101]  Tsung-Ming Lee,et al.  Dapagliflozin, a Selective SGLT2 Inhibitor, Attenuated Cardiac Fibrosis by Regulating the Macrophage Polarization via STAT3 Signaling in Infarcted Rat Hearts , 2017, Free radical biology & medicine.

[102]  V. Demarco,et al.  Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes , 2017, Cardiovascular Diabetology.

[103]  H. Yanai,et al.  A Possible Mechanism for Renoprotective Effect of Sodium-Glucose Cotransporter 2 Inhibitor: Elevation of Erythropoietin Production , 2016, Journal of clinical medicine research.

[104]  A. Scheen Effects of reducing blood pressure on cardiovascular outcomes and mortality in patients with type 2 diabetes: Focus on SGLT2 inhibitors and EMPA-REG OUTCOME. , 2016, Diabetes research and clinical practice.

[105]  R. Coronel,et al.  Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits , 2016, Diabetologia.

[106]  M. Al-Omran,et al.  Effect of Empagliflozin on Left Ventricular Mass and Diastolic Function in Individuals With Diabetes: An Important Clue to the EMPA-REG OUTCOME Trial? , 2016, Diabetes Care.

[107]  R. DeFronzo,et al.  Dapagliflozin Enhances Fat Oxidation and Ketone Production in Patients With Type 2 Diabetes , 2016, Diabetes Care.

[108]  S. Verma,et al.  Empagliflozin's Fuel Hypothesis: Not so Soon. , 2016, Cell metabolism.

[109]  S. Mudaliar,et al.  Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis , 2016, Diabetes Care.

[110]  E. Ferrannini,et al.  CV Protection in the EMPA-REG OUTCOME Trial: A “Thrifty Substrate” Hypothesis , 2016, Diabetes Care.

[111]  Christoph D. Rau,et al.  Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure , 2016, Circulation.

[112]  J. McMurray,et al.  SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? , 2016, Diabetologia.

[113]  W. Paulus,et al.  Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. , 2016, JACC. Heart failure.

[114]  M. Fischereder,et al.  Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. , 2016, The New England journal of medicine.

[115]  K. Margulies,et al.  Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure , 2016, Circulation.

[116]  B. Zinman,et al.  Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. , 2015, The New England journal of medicine.

[117]  C. Cannon,et al.  Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes , 2015, Diabetes, obesity & metabolism.

[118]  Ichiro Tokubuchi,et al.  Effects of a sodium glucose co-transporter 2 selective inhibitor, ipragliflozin, on the diurnal profile of plasma glucose in patients with type 2 diabetes: A study using continuous glucose monitoring , 2015, Journal of diabetes investigation.

[119]  D. Bers,et al.  Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. , 2015, Circulation research.

[120]  B. Perkins,et al.  Uric acid as a biomarker and a therapeutic target in diabetes. , 2015, Canadian journal of diabetes.

[121]  P. Lapuerta,et al.  Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor , 2015, Diabetes & vascular disease research.

[122]  T. Heise,et al.  Effect of the sodium glucose co‐transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus , 2014, Diabetes, obesity & metabolism.

[123]  M. Sasamata,et al.  Effects of sodium‐glucose cotransporter 2 selective inhibitor ipragliflozin on hyperglycaemia, oxidative stress, inflammation and liver injury in streptozotocin‐induced type 1 diabetic rats , 2014, The Journal of pharmacy and pharmacology.

[124]  U. Broedl,et al.  Renal Hemodynamic Effect of Sodium-Glucose Cotransporter 2 Inhibition in Patients With Type 1 Diabetes Mellitus , 2014, Circulation.

[125]  T. Heise,et al.  Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. , 2014, The Journal of clinical investigation.

[126]  M. Sasamata,et al.  Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. , 2013, European journal of pharmacology.

[127]  W. Paulus,et al.  A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. , 2013, Journal of the American College of Cardiology.

[128]  E. Kurosaki,et al.  Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data. , 2013, Pharmacology & therapeutics.

[129]  D. de Zeeuw,et al.  Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes , 2013, Diabetes, obesity & metabolism.

[130]  W. Linke,et al.  Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. , 2013, Cardiovascular research.

[131]  L. Maier,et al.  The ryanodine receptor leak: how a tattered receptor plunges the failing heart into crisis , 2012, Heart Failure Reviews.

[132]  M. Pelleymounter,et al.  Weight Loss Induced by Chronic Dapagliflozin Treatment Is Attenuated by Compensatory Hyperphagia in Diet‐Induced Obese (DIO) Rats , 2012, Obesity.

[133]  R. Grempler,et al.  Empagliflozin, a novel selective sodium glucose cotransporter‐2 (SGLT‐2) inhibitor: characterisation and comparison with other SGLT‐2 inhibitors , 2012, Diabetes, obesity & metabolism.

[134]  L. Maier,et al.  Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current , 2010, Basic Research in Cardiology.

[135]  J. Gummert,et al.  Inhibition of Elevated Ca2+/Calmodulin-Dependent Protein Kinase II Improves Contractility in Human Failing Myocardium , 2010, Circulation research.

[136]  H. Mächler,et al.  Glucose-transporter-mediated positive inotropic effects in human myocardium of diabetic and nondiabetic patients. , 2010, Metabolism: clinical and experimental.

[137]  B. Rovin,et al.  Uric acid and cardiovascular risk. , 2009, The New England journal of medicine.

[138]  Duk-Hee Kang,et al.  Uric acid and cardiovascular risk. , 2008, The New England journal of medicine.

[139]  G. Tenderich,et al.  Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts--role of late sodium current and intracellular ion accumulation. , 2008, Journal of molecular and cellular cardiology.

[140]  K. Maiese,et al.  Erythropoietin and oxidative stress. , 2008, Current neurovascular research.

[141]  D. Lau,et al.  Adipokines: molecular links between obesity and atheroslcerosis. , 2005, American journal of physiology. Heart and circulatory physiology.

[142]  R. Coronel,et al.  Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. , 2003, Cardiovascular research.

[143]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[144]  D. J. Veldhuisen,et al.  Sodium-glucose cotransporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction , 2019 .

[145]  C. Maack,et al.  Cardiac effects of SGLT2 inhibitors: the sodium hypothesis , 2018, Cardiovascular research.

[146]  J. J. Smith,et al.  Heart failure etiology affects peripheral vascular endothelial function after cardiac transplantation. , 2001, Journal of the American College of Cardiology.