Control and Synchronization of Julia Sets Generated by a Class of Complex Time-Delay Rational MAP
暂无分享,去创建一个
Da Wang | Yang Zhao | Shutang Liu | Kexin Liu | Yang Zhao | Shutang Liu | Da Wang | Kexin Liu
[1] Janet Helmstedt,et al. Graphics with Mathematica: Fractals, Julia Sets, Patterns and Natural Forms , 2004 .
[2] J. Argyris,et al. On the Julia sets of a noise-perturbed Mandelbrot map , 2002 .
[3] Xing-yuan Wang,et al. Noise perturbed generalized Mandelbrot sets , 2008 .
[4] Bernard Derrida,et al. Fractal structure of zeros in hierarchical models , 1983 .
[5] Ruihong Jia,et al. The Generalized Julia Set Perturbed by Composing Additive and Multiplicative Noises , 2009 .
[6] Mamta Rani,et al. Effect of Stochastic Noise on Superior Julia Sets , 2009, Journal of Mathematical Imaging and Vision.
[7] John Erik Fornaess. The Julia set for Henon maps , 2005 .
[8] J. Argyris,et al. On the Julia set of the perturbed Mandelbrot map , 2000 .
[9] Peng Li,et al. Complex time-delay dynamical systems of quadratic polynomials mapping , 2015 .
[10] Shutang Liu,et al. Control and synchronization of Julia sets in coupled map lattice , 2011 .
[11] Xingyuan Wang,et al. Quasi-sine Fibonacci M set with perturbation , 2012 .
[12] Shu-Tang Liu,et al. New identification and control methods of sine-function Julia sets , 2015 .
[13] Nelly Selem Mojica,et al. Cellular "bauplans": Evolving unicellular forms by means of Julia sets and Pickover biomorphs , 2009, Biosyst..
[14] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[15] Robert L. Devaney,et al. Limiting Julia Sets for singularly perturbed Rational Maps , 2008, Int. J. Bifurc. Chaos.
[16] Xingyuan Wang,et al. Additive perturbed generalized Mandelbrot-Julia sets , 2007, Appl. Math. Comput..
[17] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[18] Yongping Zhang,et al. Control and Synchronization of Julia Sets of the Complex perturbed Rational Maps , 2013, Int. J. Bifurc. Chaos.
[19] Xingyuan Wang,et al. Research on fractal structure of generalized M-J sets utilized Lyapunov exponents and periodic scanning techniques , 2006, Appl. Math. Comput..
[20] Satoru Saito,et al. An analysis of a family of rational maps containing integrable and non-integrable difference analogue of the logistic equation , 1996 .
[21] G. Julia. Mémoire sur l'itération des fonctions rationnelles , 1918 .
[22] Guanrong Chen,et al. On generalized synchronization of spatial chaos , 2003 .
[23] Guanrong Chen,et al. Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems , 2003 .
[24] Fangfang Zhang,et al. Complex function projective synchronization of complex chaotic system and its applications in secure communication , 2013, Nonlinear Dynamics.
[25] 张永平,et al. Gradient control and synchronization of Julia sets , 2008 .
[26] Ioannis Andreadis,et al. On numerical approximations of the area of the generalized Mandelbrot sets , 2013, Appl. Math. Comput..
[27] Ian D. Entwistle,et al. Julia set art and fractals in the complex plane , 1989, Comput. Graph..
[28] X. Y. Wang,et al. Noise-perturbed quaternionic Mandelbrot sets , 2009, Int. J. Comput. Math..
[29] Shutang Liu,et al. Synchronization between the spatial Julia sets of complex Lorenz system and complex Henon map , 2015 .
[30] Yongcheng Yin,et al. Dynamics of McMullen maps , 2012, 1204.1907.
[31] M. Levin,et al. A Julia set model of field-directed morphogenesis: developmental biology and artificial life , 1994, Comput. Appl. Biosci..
[32] Robert L. Devaney,et al. The Rabbit and Other Julia Sets Wrapped in Sierpi_ski Carpets , 2009 .
[33] Xiaopeng Hu,et al. A Novel Fractal Coding Method Based on M-J Sets , 2014, PloS one.
[34] G. M. Levin,et al. Symmetries on the Julia set , 1990 .
[35] Zhang Zhenfeng,et al. The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative , 2009 .
[36] Ioannis Andreadis,et al. On probabilistic Mandelbrot maps , 2009 .
[37] Ioannis Andreadis,et al. On a Closeness of the Julia Sets of noise-perturbed Complex quadratic Maps , 2012, Int. J. Bifurc. Chaos.
[38] Ioannis Andreadis,et al. On perturbations of the Mandelbrot map , 2000 .
[39] C. Beck. Physical meaning for Mandelbrot and Julia sets , 1999 .
[40] Ioannis Andreadis,et al. On a topological closeness of perturbed Julia sets , 2010, Appl. Math. Comput..
[41] Robert L. Devaney,et al. A Generalized Version of the McMullen Domain , 2008, Int. J. Bifurc. Chaos.
[42] John Erik Fornæss. The Julia Set of Hénon Maps , 2005 .
[43] Ioannis Andreadis,et al. On a topological closeness of perturbed Mandelbrot sets , 2010, Appl. Math. Comput..