Approximation of the grad div Operator in Nonconvex Domains

[1]  Jean-Claude Nédélec,et al.  Éléments finis mixtes incompressibles pour l'équation de Stokes dans ℝ3 , 1982 .

[2]  F. Kikuchi,et al.  Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .

[3]  Robert L. Taylor,et al.  Vibration analysis of fluid-solid systems using a finite element displacement formulation , 1990 .

[4]  A. Bossavit Solving Maxwell equations in a closed cavity, and the question of 'spurious modes' , 1990 .

[5]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[6]  J. P. Webb Edge Elements and What They Can Do for You , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[7]  K. Bathe,et al.  A mixed displacement-based finite element formulation for acoustic fluid-structure interaction , 1995 .

[8]  A. Bermúdez,et al.  Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .

[9]  Lucia Gastaldi,et al.  Mixed finite element methods in fluid structure systems , 1996 .

[10]  K. Bathe,et al.  DISPLACEMENT/PRESSURE BASED MIXED FINITE ELEMENT FORMULATIONS FOR ACOUSTIC FLUID–STRUCTURE INTERACTION PROBLEMS , 1997 .

[11]  Klaus-Jürgen Bathe,et al.  On Mixed Elements for Acoustic Fluid-Structure Interactions , 1997 .

[12]  F. Brezzi,et al.  On the convergence of eigenvalues for mixed formulations , 1997 .

[13]  D. Boffi,et al.  Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .

[14]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[15]  Daniele Boffi,et al.  On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..