Approximation of the grad div Operator in Nonconvex Domains
暂无分享,去创建一个
[1] Jean-Claude Nédélec,et al. Éléments finis mixtes incompressibles pour l'équation de Stokes dans ℝ3 , 1982 .
[2] F. Kikuchi,et al. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .
[3] Robert L. Taylor,et al. Vibration analysis of fluid-solid systems using a finite element displacement formulation , 1990 .
[4] A. Bossavit. Solving Maxwell equations in a closed cavity, and the question of 'spurious modes' , 1990 .
[5] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[6] J. P. Webb. Edge Elements and What They Can Do for You , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.
[7] K. Bathe,et al. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction , 1995 .
[8] A. Bermúdez,et al. Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .
[9] Lucia Gastaldi,et al. Mixed finite element methods in fluid structure systems , 1996 .
[10] K. Bathe,et al. DISPLACEMENT/PRESSURE BASED MIXED FINITE ELEMENT FORMULATIONS FOR ACOUSTIC FLUID–STRUCTURE INTERACTION PROBLEMS , 1997 .
[11] Klaus-Jürgen Bathe,et al. On Mixed Elements for Acoustic Fluid-Structure Interactions , 1997 .
[12] F. Brezzi,et al. On the convergence of eigenvalues for mixed formulations , 1997 .
[13] D. Boffi,et al. Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .
[14] M. Costabel,et al. Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .
[15] Daniele Boffi,et al. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..