On Independent Sets and Bicliques in Graphs

Bicliques of graphs have been studied extensively, partially motivated by the large number of applications. In this paper we improve Prisner’s upper bound on the number of maximal bicliques (Combinatorica, 20, 109–117, 2000) and show that the maximum number of maximal bicliques in a graph on n vertices is Θ(3n/3). Our major contribution is an exact exponential-time algorithm. This branching algorithm computes the number of distinct maximal independent sets in a graph in time O(1.3642n), where n is the number of vertices of the input graph. We use this counting algorithm and previously known algorithms for various other problems related to independent sets to derive algorithms for problems related to bicliques via polynomial-time reductions.

[1]  Zsolt Tuza,et al.  The Number of Maximal Independent Sets in Triangle-Free Graphs , 1993, SIAM J. Discret. Math..

[2]  Erich Prisner,et al.  Bicliques in Graphs I: Bounds on Their Number , 2000, Comb..

[3]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[4]  Dieter Kratsch,et al.  On Independent Sets and Bicliques in Graphs , 2008, WG.

[5]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[6]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[7]  Lhouari Nourine,et al.  A fast incremental algorithm for building lattices , 2002, J. Exp. Theor. Artif. Intell..

[8]  Mathieu Liedloff,et al.  A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set , 2012, Discret. Math. Theor. Comput. Sci..

[9]  Hans L. Bodlaender,et al.  Design by Measure and Conquer, A Faster Exact Algorithm for Dominating Set , 2008, STACS.

[10]  Dorit S. Hochbaum,et al.  Approximating Clique and Biclique Problems , 1998, J. Algorithms.

[11]  Yoshio Okamoto,et al.  Linear-Time Counting Algorithms for Independent Sets in Chordal Graphs , 2005, WG.

[12]  Fabrizio Grandoni,et al.  A measure & conquer approach for the analysis of exact algorithms , 2009, JACM.

[13]  Jérôme Amilhastre,et al.  Complexity of Minimum Biclique Cover and Minimum Biclique Decomposition for Bipartite Domino-free Graphs , 1998, Discret. Appl. Math..

[14]  Thomas C. van Dijk,et al.  Inclusion/Exclusion Meets Measure and Conquer , 2009, ESA.

[15]  Henning Fernau,et al.  An exact algorithm for the Maximum Leaf Spanning Tree problem , 2009, Theor. Comput. Sci..

[16]  Milind Dawande,et al.  On Bipartite and Multipartite Clique Problems , 2001, J. Algorithms.

[17]  Celina M. H. de Figueiredo,et al.  Generating bicliques of a graph in lexicographic order , 2005, Theor. Comput. Sci..

[18]  Peter Jonsson,et al.  An algorithm for counting maximum weighted independent sets and its applications , 2002, SODA '02.

[19]  Fabrizio Grandoni,et al.  Measure and Conquer: Domination - A Case Study , 2005, ICALP.

[20]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[21]  Magnus Wahlström,et al.  Counting models for 2SAT and 3SAT formulae , 2005, Theor. Comput. Sci..

[22]  Celina M. H. de Figueiredo,et al.  On the generation of bicliques of a graph , 2007, Discret. Appl. Math..

[23]  Magnus Wahlström,et al.  A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances , 2008, IWPEC.

[24]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[25]  Joachim Kneis,et al.  A Fine-grained Analysis of a Simple Independent Set Algorithm , 2009, FSTTCS.

[26]  Yoshio Okamoto,et al.  Counting the number of independent sets in chordal graphs , 2008, J. Discrete Algorithms.

[27]  Kazuhisa Makino,et al.  New Algorithms for Enumerating All Maximal Cliques , 2004, SWAT.

[28]  Fabrizio Grandoni,et al.  Measure and conquer: a simple O(20.288n) independent set algorithm , 2006, SODA '06.

[29]  René Peeters,et al.  The maximum edge biclique problem is NP-complete , 2003, Discret. Appl. Math..

[30]  Fedor V. Fomin,et al.  On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms , 2008, Algorithmica.

[31]  L. Beran,et al.  [Formal concept analysis]. , 1996, Casopis lekaru ceskych.

[32]  Lhouari Nourine,et al.  A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..

[33]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[34]  J. Moon,et al.  On cliques in graphs , 1965 .

[35]  Peter L. Hammer,et al.  Consensus algorithms for the generation of all maximal bicliques , 2004, Discret. Appl. Math..

[36]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.

[37]  Erik D. Demaine,et al.  07281 Open Problems -- Structure Theory and FPT Algorithmcs for Graphs, Digraphs and Hypergraphs , 2007, Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs.

[38]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[39]  Martin Fürer,et al.  Algorithms for Counting 2-SAT Solutions and Colorings with Applications , 2005, Electron. Colloquium Comput. Complex..