Continuous culture techniques as simulators for standard cells: Jacques Monod’s, Aron Novick’s and Leo Szilard’s quantitative approach to microbiology

Continuous culture techniques were developed in the early twentieth century to replace cumbersome studies of cell growth in batch cultures. In contrast to batch cultures, they constituted an open concept, as cells are forced to proliferate by adding new medium while cell suspension is constantly removed. During the 1940s and 1950s new devices have been designed—called “automatic syringe mechanism,” “turbidostat,” “chemostat,” “bactogen,” and “microbial auxanometer”—which allowed increasingly accurate quantitative measurements of bacterial growth. With these devices cell growth came under the external control of the experimenters and thus accessible for developing a mathematical theory of growth kinetics—developed mainly by Jacques Monod, Aron Novick and Leo Szilard in the early 1950s and still in use today. The paper explores the development of continuous culture devices and claims that these devices are simulators for standard cells following specific requirements, in particular involving mathematical constraints in the design and setting of the devices as well as experiments. These requirements have led to contemporary designs of continuous culture techniques realizing a specific event-based flow algorithm able to simulate directed evolution and produce artificial cells and microorganisms. This current development is seen as an alternative approach to today’s synthetic biology.

[1]  A. Novick,et al.  Description of the chemostat. , 1950, Science.

[2]  Jacques Monod,et al.  LA TECHNIQUE DE CULTURE CONTINUE THÉORIE ET APPLICATIONS , 1978 .

[3]  R. Jordan,et al.  An Accurate Automatic Syringe Mechanism , 1942 .

[4]  G. Briggs,et al.  A Note on the Kinetics of Enzyme Action. , 1925, The Biochemical journal.

[5]  E. Haddon Apparatus for obtaining a continuous bacterial growth , 1928 .

[6]  Eric Winsberg,et al.  Simulated Experiments: Methodology for a Virtual World , 2003, Philosophy of Science.

[7]  T. Egli,et al.  Dynamics of microbial growth and cell composition in batch culture. , 1990, FEMS microbiology reviews.

[8]  T. W. James,et al.  Continuous Culture of Microorganisms , 1961 .

[9]  T. Horiuchi [Continuous culture of bacteria]. , 1972, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[10]  Evelyn Fox Keller,et al.  Models, Simulation, and 'computer Experiments' , 2011 .

[11]  K. Dalziel An apparatus for the spectrokinetic study of rapid reactions. , 1953, The Biochemical journal.

[12]  Biology by Numbers: Frontmatter , 1998 .

[13]  Philippe Marlière,et al.  Chemical evolution of a bacterium's genome. , 2011, Angewandte Chemie.

[14]  J. Myers Culture Conditions and the Development of the Photosynthetic Mechanism: V. Influence of the Composition of the Nurient Medium. , 1947, Plant physiology.

[15]  Johann Feichter,et al.  Climate change and policy : the calculability of climate change and the challenge of uncertainty , 2011 .

[16]  G. Solomons Improvements in the design and operation of the chemostat , 1972 .

[17]  H. Gutfreund Rapid-flow techniques and their contributions to enzymology. , 1999, Trends in biochemical sciences.

[18]  G. Millikan The Kinetics of Muscle Haemoglobin , 1936 .

[19]  Gabriele Gramelsberger Computerexperimente: Zum Wandel der Wissenschaft im Zeitalter des Computers , 2010 .

[20]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[21]  Sergio Sismondo Models, Simulations, and Their Objects , 1999 .

[22]  H. Hartridge,et al.  A method of measuring the velocity of very rapid chemical reactions , 1923 .

[23]  Cyrille Imbert,et al.  Models, Simulations, and Representations , 2011 .

[24]  P. Anderson AUTOMATIC RECORDING OF THE GROWTH RATES OF CONTINUOUSLY CULTURED MICROORGANISMS , 1953, The Journal of general physiology.

[25]  Johannes Lenhard,et al.  Simulation : pragmatic construction of reality , 2006 .

[26]  M. Delbrück,et al.  Mutations of Bacteria from Virus Sensitivity to Virus Resistance. , 1943, Genetics.

[27]  C. Hudson THE INVERSION OF CANE SUGAR BY INVERTASE, II.1 , 1908 .

[28]  Viktor A. Kritsman Ludwig Wilhelmy, Jacobus H. van't Hoff, Svante Arrhenius und die Geschichte der chemischen Kinetik , 1997 .

[29]  From enzymatic adaptation to allosteric transitions , 2003 .

[30]  Ruth J. Williams,et al.  Queueing up for Enzymatic Processing: Correlated Signaling through Coupled Degradation , 2022 .

[31]  Jacques Monod,et al.  From Enzymatic Adaptation to Allosteric Transitions , 1966, Science.

[32]  Ted Faison,et al.  Event-Based Programming: Taking Events to the Limit , 2006 .

[33]  B CHANCE,et al.  The mechanism of catalase action. II. Electric analog computer studies. , 1952, Archives of biochemistry and biophysics.

[34]  Svante Arrhenius,et al.  Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren , 1889 .

[35]  E. Powell,et al.  Growth rate and generation time of bacteria, with special reference to continuous culture. , 1956, Journal of general microbiology.

[36]  R. Burian,et al.  The French school of genetics: from physiological and population genetics to regulatory molecular genetics. , 1999, Annual review of genetics.

[37]  Margaret Morrison,et al.  Reconstructing Reality: Models, Mathematics, and Simulations , 2015 .

[38]  J. Monod,et al.  Recherches sur la croissance des cultures bactériennes , 1942 .

[39]  A. Novick,et al.  Experiments on spontaneous and chemically induced mutations of bacteria growing in the Chemostat. , 1951, Cold Spring Harbor symposia on quantitative biology.

[40]  J. Myers,et al.  METABOLIC CONDITIONS IN CHLORELLA , 1948, The Journal of general physiology.

[41]  A. Novick,et al.  Experiments with the Chemostat on spontaneous mutations of bacteria. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[43]  Axel Gelfert,et al.  Philosophical perspectives on synthetic biology. , 2013, Studies in history and philosophy of biological and biomedical sciences.

[44]  A. Novick Growth of bacteria. , 1955, Annual review of microbiology.

[45]  Stephan Hartmann,et al.  The World as a Process , 1996 .

[46]  Hannah Landecker,et al.  Culturing Life: How Cells Became Technologies , 2007 .

[47]  A. Thiel Lois générales de l'action des diastases, par VICTOR HENRI. VIII und 129 Seiten. (Paris, A. HERMANN, 1903.) , 1903 .

[48]  H. C. Bold The cultivation of algae , 1942, The Botanical Review.

[49]  Paul Humphreys,et al.  Extending Ourselves: Computational Science, Empiricism, and Scientific Method , 2004 .

[50]  Francis Sullivan,et al.  Science in the Age of Computer Simulation , 2011 .

[51]  D. Herbert,et al.  MULTI-STAGE CONTINUOUS CULTURE , 1964 .

[52]  B. Chance,et al.  The kinetics of the enzyme-substrate compound of peroxidase. 1943. , 1943, Advances in enzymology and related areas of molecular biology.

[53]  D. Herbert,et al.  The continuous culture of bacteria; a theoretical and experimental study. , 1956, Journal of general microbiology.

[54]  Michael Fisher,et al.  Biology Is Technology , 2010 .

[55]  Davis Baird,et al.  Thing Knowledge: A Philosophy of Scientific Instruments , 2004 .

[56]  Laurent Loison Monod before Monod: enzymatic adaptation, Lwoff, and the legacy of general biology. , 2013, History and philosophy of the life sciences.

[57]  H. W. Wiley LOIS GÉNÉRALES DE L'ACTION DES DIASTASES. , 1903 .

[58]  Ludwig Wilhelmy,et al.  Ueber das Gesetz, nach welchem die Einwirkung der Säuren auf den Rohrzucker stattfindet , 1850 .

[59]  R. Lenski,et al.  Evolution in Action , 2011 .

[60]  D. Dowling Experimenting on Theories , 1999, Science in Context.

[61]  Hans-Jörg Rheinberger,et al.  Putting isotopes to work: liquid scintillation counters, 1950-1970 , 2001 .

[62]  Karen A. Rader,et al.  Making Mice: Standardizing Animals for American Biomedical Research, 1900-1955 , 2004 .

[63]  H. E. Kubitschek Introduction to research with continuous cultures , 1970 .

[64]  M. Suárez Fictions in science: philosophical essays on modeling and idealisation , 2008 .

[65]  Elof Axel Carlson Biology is Technology: The Promise, Peril, and New Business of Engineering Life . By Robert H. Carlson . Cambridge (Massachusetts) : Harvard University Press. $39.95. vii + 279 p.; ill.; index. 978‐0‐674‐03544‐7 . 2010 . , 2010 .

[66]  M. J. H. van't Hoff,et al.  Etudes de dynamique chimique , 2010 .

[67]  J. Monod The Growth of Bacterial Cultures , 1949 .

[68]  R. C. Jordan,et al.  The Growth of Bacteria with a Constant Food Supply , 1944, Journal of bacteriology.

[69]  J. Myers,et al.  CULTURE CONDITIONS AND THE DEVELOPMENT OF THE PHOTOSYNTHETIC MECHANISM , 1946, The Journal of general physiology.