Can a polynomial interpolation improve on the Kaplan-Yorke dimension?

Abstract The Kaplan–Yorke dimension can be derived using a linear interpolation between an h -dimensional Lyapunov exponent λ ( h ) > 0 and an h + 1 -dimensional Lyapunov exponent λ ( h + 1 ) 0 . In this Letter, we use a polynomial interpolation to obtain generalized Lyapunov dimensions and study the relationships among them for higher-dimensional systems.

[1]  Robert M. Corless,et al.  Defect-controlled numerical methods and shadowing for chaotic differential equations , 1992 .

[2]  Hendrik Richter,et al.  The Generalized HÉnon Maps: Examples for Higher-Dimensional Chaos , 2002, Int. J. Bifurc. Chaos.

[3]  J J Zebrowski,et al.  Logistic map with a delayed feedback: Stability of a discrete time-delay control of chaos. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Th. Meyer,et al.  HYPERCHAOS IN THE GENERALIZED ROSSLER SYSTEM , 1997, chao-dyn/9906028.

[5]  F. Ledrappier,et al.  Some relations between dimension and Lyapounov exponents , 1981 .

[6]  J. Sprott Chaos and time-series analysis , 2001 .

[7]  J. Yorke,et al.  The liapunov dimension of strange attractors , 1983 .

[8]  G. Baier,et al.  Maximum hyperchaos in generalized Hénon maps , 1990 .

[9]  C. G. Hoover,et al.  The second law of thermodynamics and multifractal distribution functions: Bin counting, pair correlations, and the Kaplan–Yorke conjecture , 2007 .

[10]  John H Mathews,et al.  Numerical methods for computer science, engineering, and mathematics , 1986 .

[11]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[12]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms Part II: Relations between entropy, exponents and dimension , 1985 .

[13]  Julyan H. E. Cartwright,et al.  THE DYNAMICS OF RUNGE–KUTTA METHODS , 1992 .

[14]  L. Young,et al.  Dimension, entropy and Lyapunov exponents in differentiable dynamical systems , 1984 .

[15]  Fick,et al.  Logistic equation with memory. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[16]  J. Sprott,et al.  Hyperlabyrinth chaos: from chaotic walks to spatiotemporal chaos. , 2007, Chaos.

[17]  Zhimin Chen A note on Kaplan-Yorke-type estimates on the fractal dimension of chaotic attractors , 1993 .

[18]  Firdaus E. Udwadia,et al.  An efficient QR based method for the computation of Lyapunov exponents , 1997 .

[19]  Equivalence of the continuum limit of the generalized Rössler system and the chaotic transmission line oscillator , 2005 .

[20]  Julien Clinton Sprott,et al.  A comparison of correlation and Lyapunov dimensions , 2005 .

[21]  H. Peitgen,et al.  Functional Differential Equations and Approximation of Fixed Points , 1979 .

[22]  Hendrik Richter,et al.  On a family of maps with multiple chaotic attractors , 2008 .