Mapping the structure of science through usage

SummaryScience has traditionally been mapped on the basis of authorship and citation data. Due to publication and citation delays such data represents the structure of science as it existed in the past. We propose to map science by proxy of journal relationships derived from usage data to determine research trends as they presently occur. This mapping is performed by applying a principal components analysis superimposed with a k-means cluster analysis on networks of journal relationships derived from a large set of article usage data collected for the Los Alamos National Laboratory research community. Results indicate that meaningful maps of the interests of a local scientific community can be derived from usage data. Subject groupings in the mappings corresponds to Thomson ISI subject categories. A comparison to maps resulting from the analysis of 2003 Thomson ISI Journal Citation Report data reveals interesting differences between the features of local usage and global citation data.

[1]  Henk F. Moed,et al.  Mapping of science by combined co-citation and word analysis: II: Dynamical aspects , 1991, J. Am. Soc. Inf. Sci..

[2]  Loet Leydesdorff,et al.  Mapping Global Science Using International Co-authorships : A Comparison of 1990 and 2000 , 2003 .

[3]  Johan Bollen,et al.  Evaluation of Digital Library Impact and User Communities by Analysis of Usage Patterns , 2002, D Lib Mag..

[4]  Jim E. Everett,et al.  A combined loglinear/MDS model for mapping journals by citation analysis , 1991, J. Am. Soc. Inf. Sci..

[5]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[6]  Kevin W. Boyack,et al.  Domain visualization using VxInsight® for science and technology management , 2002, J. Assoc. Inf. Sci. Technol..

[7]  M. Newman Erratum: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality (Physical Review e (2001) 64 (016132)) , 2006 .

[8]  Tao Luo,et al.  Effective personalization based on association rule discovery from web usage data , 2001, WIDM '01.

[9]  Stephen S. Murray,et al.  The bibliometric properties of article readership information , 2005, J. Assoc. Inf. Sci. Technol..

[10]  Katherine W. McCain,et al.  Mapping economics through the journal literature: An experiment in journal cocitation analysis , 1991, J. Am. Soc. Inf. Sci..

[11]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[12]  Michael Bieber,et al.  A clickstream-based collaborative filtering personalization model: towards a better performance , 2004, WIDM '04.

[13]  Amanda Spink,et al.  A comparison of foreign authorship distribution in JASIST and the Journal of Documentation , 2002, J. Assoc. Inf. Sci. Technol..

[14]  Ray J. Paul,et al.  Visualizing a Knowledge Domain's Intellectual Structure , 2001, Computer.

[15]  Johan Bollen,et al.  Co-authorship networks in the digital library research community , 2005, Inf. Process. Manag..

[16]  A. Nederhof Methods of coping with social desirability bias: A review. , 1985 .

[17]  Stephen S. Murray,et al.  Worldwide Use and Impact of the NASA Astrophysics Data System Digital Library , 2009, J. Assoc. Inf. Sci. Technol..

[18]  Loet Leydesdorff,et al.  Top-down decomposition of the Journal Citation Reportof the Social Science Citation Index: Graph- and factor-analytical approaches , 2004, Scientometrics.

[19]  Paul Wouters,et al.  Citation cycles and peer review cycles , 2006, Scientometrics.

[20]  Herbert Van de Sompel,et al.  Rethinking Scholarly Communication: Building the System that Scholars Deserve , 2004, D Lib Mag..

[21]  Henk F. Moed,et al.  Mapping of science by combined co-citation and word analysis, I. Structural aspects , 1991, J. Am. Soc. Inf. Sci..

[22]  P. S. Nagpaul Visualizing cooperation networks of elite institutions in India , 2002, Scientometrics.

[23]  J. Everett,et al.  A Combined Loglinear/MDS Model for Mapping Journals by Citation Analysis. , 1991 .

[24]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[25]  Kevin W Boyack,et al.  Mapping knowledge domains: Characterizing PNAS , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Suleyman Tufekci,et al.  Generalized decision trees: methodology and applications , 1993 .

[27]  H. Van de Sompel,et al.  Toolkits for visualizing co-authorship graph , 2004, Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004..

[28]  Loet Leydesdorff,et al.  Clusters and Maps of Science Journals Based on Bi-connected Graphs in the Journal Citation Reports , 2009, ArXiv.

[29]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[31]  Kevin W. Boyack,et al.  Mapping the backbone of science , 2004, Scientometrics.

[32]  Johan Bollen,et al.  Toward alternative metrics of journal impact: A comparison of download and citation data , 2005, Inf. Process. Manag..

[33]  Herbert Van de Sompel,et al.  Open Linking in the Scholarly Information Environment Using the OpenURL Framework , 2001, D Lib Mag..

[34]  Henry G. Small,et al.  Co-citation in the scientific literature: A new measure of the relationship between two documents , 1973, J. Am. Soc. Inf. Sci..

[35]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[36]  Stevan Harnad,et al.  Earlier Web Usage Statistics as Predictors of Later Citation Impact , 2005, J. Assoc. Inf. Sci. Technol..

[37]  Chestalene Pintozzi Every Librarian a Leader: Rethinking scholarly communication , 1996 .

[38]  Jonathan Adams,et al.  Early citation counts correlate with accumulated impact , 2005, Scientometrics.

[39]  Herbert Van de Sompel,et al.  Using the OAI-PMH ... Differently , 2003, D Lib Mag..

[40]  Amy Friedlander,et al.  D-Lib Magazine: Publishing as the Honest Broker , 1998 .

[41]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[42]  M. M. Kessler Bibliographic coupling between scientific papers , 1963 .

[43]  Henk F. Moed,et al.  Publication delays in the science field and their relationship to the ageing of scientific literature , 2006, Scientometrics.

[44]  Philip K. Chan,et al.  Constructing Web User Profiles: A non-invasive Learning Approach , 1999, WEBKDD.

[45]  I. Jolliffe Principal Component Analysis , 2002 .

[46]  Thed N. van Leeuwen,et al.  Citation delay in interdisciplinary knowledge exchange , 2001, Scientometrics.

[47]  Henk F. Moed,et al.  Mapping of Science by Combined Co-Citation and Word Analysis. I. Structural Aspects , 1991 .

[48]  Leo Egghe,et al.  The influence of publication delays on the observed aging distribution of scientific literature , 2000 .

[49]  Henk F. Moed,et al.  Mapping of science by combined co-citation and word analysis. II: Dynamical aspects , 1991 .

[50]  M. King,et al.  Social desirability bias: A neglected aspect of validity testing , 2000 .

[51]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[52]  M. Newman Clustering and preferential attachment in growing networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[54]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[55]  Leo Egghe,et al.  The influence of publication delays on the observed aging distribution of scientific literature , 2000, J. Am. Soc. Inf. Sci..