A numerical study on magnetic polarity transition in an MHD dynamo model
暂无分享,去创建一个
Yoshimori Honkura | Masaki Matsushima | M. Matsushima | Futoshi Takahashi | Y. Honkura | F. Takahashi
[1] M. Matsushima,et al. Simulations of a QuasiTaylor State Geomagnetic Field Including Polarity Reversals on the Earth Simulator , 2005, Science.
[2] Masaru Kono,et al. RECENT GEODYNAMO SIMULATIONS AND OBSERVATIONS OF THE GEOMAGNETIC FIELD , 2002 .
[3] D. Gubbins,et al. Symmetry properties of the dynamo equations for palaeomagnetism and geomagnetism , 1993 .
[4] Johannes Wicht. Palaeomagnetic interpretation of dynamo simulations , 2005 .
[5] Johannes Wicht,et al. A detailed study of the polarity reversal mechanism in a numerical dynamo model , 2004 .
[6] Akira Kageyama,et al. Computer simulation of a magnetohydrodynamic dynamo. II , 1994 .
[7] H. Tsunakawa,et al. Further K-Ar dating and paleomagnetic study of the Auckland geomagnetic excursions , 2007 .
[8] Johannes Wicht. Inner-core conductivity in numerical dynamo simulations , 2002 .
[9] D. Gubbins. The distinction between geomagnetic excursions and reversals , 1999 .
[10] G. Glatzmaier,et al. An examination of simulated geomagnetic reversals from a palaeomagnetic perspective , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[11] Akira Kageyama,et al. Repeated and Sudden Reversals of the Dipole Field Generated by a Spherical Dynamo Action , 2002, Science.
[12] R. Parker,et al. A statistical analysis of magnetic fields from some geodynamo simulations , 2001 .
[13] C. Laj,et al. On the age of the Laschamp geomagnetic excursion , 2004 .
[14] Gauthier Hulot,et al. Statistical palaeomagnetic field modelling and dynamo numerical simulation , 2005 .
[15] Paul H. Roberts,et al. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal , 1995, Nature.
[16] R. Merrill. The magnetic field of the earth , 1996 .
[17] U. Christensen,et al. Dipole moment scaling for convection-driven planetary dynamos , 2005 .
[18] U. Christensen,et al. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields , 2006 .
[19] U. Christensen,et al. Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration , 1999 .
[20] B. Clement. Dependence of the duration of geomagnetic polarity reversals on site latitude , 2004, Nature.
[21] C. Jones,et al. A convection driven geodynamo reversal model , 1999 .
[22] C. Laj,et al. Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Islands, and the geomagnetic instability timescale , 2002 .
[23] Ulrich R. Christensen,et al. Numerical modelling of the geodynamo: a systematic parameter study , 1999 .
[24] H. Tsunakawa,et al. K-Ar ages of the Auckland geomagnetic excursions , 2004 .
[25] B. Jicha,et al. Paleomagnetic directions and 40Ar/39Ar ages from the Tatara‐San Pedro volcanic complex, Chilean Andes: Lava record of a Matuyama‐Brunhes precursor? , 2004 .
[26] Yoshimori Honkura,et al. Scale variability in convection-driven MHD dynamos at low Ekman number , 2008 .
[27] Carsten Kutzner,et al. From stable dipolar towards reversing numerical dynamos , 2002 .
[28] H. Tsunakawa,et al. Palaeointensities of the Auckland geomagnetic excursions by the LTD-DHT Shaw method , 2006 .
[29] M. Matsushima,et al. Dynamo action and its temporal variation inside the tangent cylinder in MHD dynamo simulations , 2002 .
[30] M. Matsushima,et al. Effects of boundary layers on magnetic field behavior in an MHD dynamo model , 2001 .
[31] M. Matsushima,et al. Dynamo action in a rotating spherical shell at high Rayleigh numbers , 2005 .
[32] Carsten Kutzner,et al. Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths , 2004 .