Current Status of the COFFE Solver within HPCMP CREATETM-AV Kestrel

[1]  Stephen L. Wood,et al.  Exploring Unstructured Mesh Adaptation for Hybrid Reynolds-Averaged Navier–Stokes/Large Eddy Simulation , 2020 .

[2]  B. M. Shabanov,et al.  Vectorization of High-performance Scientific Calculations Using AVX-512 Intruction Set , 2019, Lobachevskii Journal of Mathematics.

[3]  Ryan S. Glasby,et al.  High-Order Shock Capturing Techniques using HPCMP CREATE-AV Kestrel , 2019, AIAA Scitech 2019 Forum.

[4]  Richard A. Wahls,et al.  Retrospective on the Common Research Model for Computational Fluid Dynamics Validation Studies , 2018, Journal of Aircraft.

[5]  Jon T. Erwin,et al.  High-Order Time-Accurate Simulations using HPCMP CREATE(TM)-AV Kestrel Component COFFE , 2018 .

[6]  Scott A. Morton,et al.  HPCMP CREATETM-AV Kestrel Architecture Capability and Future Direction , 2018 .

[7]  D. Knight,et al.  Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions , 2017 .

[8]  S. Morton,et al.  F-16XL Simulations at Flight Conditions Using Hybrid Near-Body/Offbody Computational Fluid Dynamics , 2017 .

[9]  Steve L. Karman,et al.  Stabilized Finite Elements in FUN3D , 2017 .

[10]  Mark Gammon,et al.  The NASA Common Research Model: A Geometry-Handling Perspective , 2016 .

[11]  Jon T. Erwin,et al.  High-Order Mesh Curving Using WCN Mesh Optimization , 2016 .

[12]  Ryan S. Glasby,et al.  Application of HPCMP CREATETM-AV COFFE for Three-Dimensional Turbulent Flow Cases , 2016 .

[13]  Ryan S. Glasby,et al.  Introduction to COFFE: The Next-Generation HPCMP CREATE-AV CFD Solver , 2016 .

[14]  Scott A. Morton,et al.  Accuracy and Performance Improvements to Kestrel’s Near-Body Flow Solver , 2016 .

[15]  Scott A. Morton,et al.  HPCMP CREATETM-AV Kestrel Architecture, Capabilities, and Long Term Plan for Fixed-Wing Aircraft Simulations , 2016 .

[16]  W. K. Anderson,et al.  Investigation of Unstructured Higher-Order Methods for Unsteady flow and Moving Domains , 2015 .

[17]  David L. Darmofal,et al.  A Verification Driven Process for Rapid Development of CFD Software , 2015 .

[18]  Edward N. Tinoco,et al.  Reynolds-Averaged Navier–Stokes Technology for Transonic Drag Prediction: A Boeing Perspective , 2014 .

[19]  Dana P. Hammond,et al.  Application of the FUN3D Solver to the 4th AIAA Drag Prediction Workshop , 2014 .

[20]  David R. McDaniel,et al.  Multiple Bodies, Motion, and Mash-Ups: Handling Complex Use-Cases with Kestrel , 2014 .

[21]  Peter A. Gnoffo,et al.  Functional Equivalence Acceptance Testing of FUN3D for Entry Descent and Landing Applications , 2013 .

[22]  W. K. Anderson,et al.  High-Order Finite-Element Method for Three-Dimensional Turbulent Navier-Stokes , 2013 .

[23]  W. K. Anderson,et al.  Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes , 2013 .

[24]  Li Wang,et al.  Extension of the Petrov-Galerkin Time-Domain Algorithm for Dispersive Media , 2013, IEEE Microwave and Wireless Components Letters.

[25]  Arnold Afb,et al.  Comparison of SU/PG and DG Finite-Element Techniques for the Compressible Navier-Stokes Equations on Anisotropic Unstructured Meshes , 2013 .

[26]  Joseph Morrison,et al.  Statistical Analysis of CFD Solutions from the Fifth AIAA Drag Prediction Workshop , 2013 .

[27]  Jian Yu,et al.  Numerical Investigation of Hypersonic Double-Cone Flow , 2012 .

[28]  W. K. Anderson,et al.  Petrov-Galerkin and discontinuous-Galerkin methods for time-domain and frequency-domain electromagnetic simulations , 2011, J. Comput. Phys..

[29]  Dimitri J. Mavriplis,et al.  NSU3D Results for the Fourth AIAA Drag Prediction Workshop , 2010 .

[30]  Marc Duruflé,et al.  Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements , 2010, J. Sci. Comput..

[31]  Peter A. Gnoffo,et al.  Multi-Dimensional, Inviscid Flux Reconstruction for Simulation of Hypersonic Heating on Tetrahedral Grids , 2009 .

[32]  John C. Vassberg,et al.  Development of a Common Research Model for Applied CFD Validation Studies , 2008 .

[33]  Garrett. Barter,et al.  Shock Capturing with PDE-Based Artificial Viscosity for an Adaptive, Higher-Order Discontinuous Galerkin Finite Element Method , 2008 .

[34]  Mitsuhiro Murayama,et al.  Efficient Design Exploration of Nacelle Chine Installation in Wind Tunnel Testing , 2008 .

[35]  David L. Darmofal,et al.  Shock Capturing with Higher-Order, PDE-Based Artificial Viscosity , 2007 .

[36]  Hanan Samet,et al.  Execution time analysis of a top-down R-tree construction algorithm , 2007, Inf. Process. Lett..

[37]  P. Spalart,et al.  A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities , 2006 .

[38]  S. Allmaras,et al.  Lagrange Multiplier Implementation of Dirichlet Boundary Conditions in Compressible Navier-Stokes Finite Element Methods , 2005 .

[39]  Graham V. Candler,et al.  Double-Cone Experiment and Numerical Analysis at AEDC Hypervelocity Wind Tunnel No. 9 , 2005 .

[40]  Matthew MacLean,et al.  VALIDATION AND COMPARISON OF WIND AND DPLR RESULTS FOR HYPERSONIC, LAMINAR PROBLEMS , 2004 .

[41]  Venkat Venkatakrishnan,et al.  Higher Order Schemes for the Compressible Navier-Stokes Equations , 2003 .

[42]  Aart J. C. Bik,et al.  Automatic Intra-Register Vectorization for the Intel® Architecture , 2002, International Journal of Parallel Programming.

[43]  K. Sawada,et al.  Three-dimensional calculations of hypersonic flowfield over double-cone geometries , 2002 .

[44]  Graham V. Candler,et al.  Computational analysis of hypersonic laminar viscous-inviscid interactions , 2000 .

[45]  P. Spalart Strategies for turbulence modelling and simulations , 2000 .

[46]  D. Bonhaus,et al.  A higher order accurate finite element method for viscous compressible flows , 1999 .

[47]  Mario A. López,et al.  A greedy algorithm for bulk loading R-trees , 1998, GIS '98.

[48]  Philippe R. Spalart,et al.  TURBULENCE MODELING IN ROTATING AND CURVED CHANNELS: ASSESSMENT OF THE SPALART-SHUR CORRECTION TERM , 1998 .

[49]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[50]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[51]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[52]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[53]  Thomas J. R. Hughes,et al.  Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations†‡ , 1987 .

[54]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[55]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[56]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[57]  Peter A. Gnoffo,et al.  Computational Fluid Dynamics Technology for Hypersonic Applications , 2003 .

[58]  Graham V. Candler,et al.  Effect of Vibrational Nonequilibrium on Hypersonic Double-Cone Experiments , 2003 .

[59]  P. Spalart,et al.  Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction , 2000 .

[60]  A. Smits,et al.  Numerical and experimental investigation of double-cone shock interactions , 1997 .