The Moment Map: Nonlinear Dynamics of Density Evolution via a Few Moments

We explore situations in which certain stochastic and high-dimensional deterministic systems behave effectively as low-dimensional dynamical systems. We define and study moment maps, maps on spaces of low-order moments of evolving distributions, as a means of understanding equation-free multiscale algorithms for these systems. The moment map itself is deterministic and attempts to capture the implied probability distribution of the dynamics. By choosing situations where the low-dimensional dynamics can be understood a priori, we evaluate the moment map. Despite requiring the evolution of an ensemble to define the map, this can be an efficient numerical tool, as the map opens up the possibility of bifurcation analyses and other high level tasks being performed on the system. We demonstrate how nonlinearity arises in these maps and how this results in the stabilization of metastable states. Examples are shown for a hierarchy of models, ranging from simple stochastic differential equations to molecular dynam...

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Ioannis G. Kevrekidis,et al.  Application of Coarse Integration to Bacterial Chemotaxis , 2003, Multiscale Model. Simul..

[3]  Ioannis G Kevrekidis,et al.  Coarse-grained kinetic computations for rare events: application to micelle formation. , 2005, The Journal of chemical physics.

[4]  I. G. Kevrekidis,et al.  Coarse Brownian dynamics for nematic liquid crystals: Bifurcation, projective integration, and control via stochastic simulation , 2003 .

[5]  I. Kevrekidis,et al.  An equation-free computational approach for extracting population-level behavior from individual-based models of biological dispersal , 2005, physics/0505179.

[6]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  O H Hald Optimal prediction and the Klein-Gordon equation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .

[9]  C. William Gear Projective Integration Methods for Distributions , 2001 .

[10]  Wilhelm Huisinga,et al.  Metastability of Markovian systems , 2001 .

[11]  Paul Tavan,et al.  Topological feature maps with self-organized lateral connections: a population-coded, one-layer model of associative memory , 1994, Biological Cybernetics.

[12]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[13]  C. W. Gear,et al.  'Coarse' integration/bifurcation analysis via microscopic simulators: Micro-Galerkin methods , 2002 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Ioannis G. Kevrekidis,et al.  Equation-free: The computer-aided analysis of complex multiscale systems , 2004 .

[16]  Francesco Zirilli,et al.  Asymptotic eigenvalue degeneracy for a class of one‐dimensional Fokker–Planck operators , 1985 .

[17]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  I. Kevrekidis,et al.  Apparent hysteresis in a driven system with self-organized drag. , 2003, Physical review letters.

[19]  Wilhelm Huisinga,et al.  An Averaging Principle for Fast Degrees of Freedom Exhibiting Long-Term Correlations , 2004, Multiscale Model. Simul..

[20]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[21]  P. Deuflharda,et al.  Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains , 2000 .

[22]  Constantinos Theodoropoulos,et al.  Coarse bifurcation studies of bubble flow lattice Boltzmann simulations , 2004 .

[23]  I. Kevrekidis,et al.  Coarse molecular dynamics of a peptide fragment: Free energy, kinetics, and long-time dynamics computations , 2002, physics/0212108.

[24]  E. Vanden-Eijnden,et al.  Analysis of multiscale methods for stochastic differential equations , 2005 .

[25]  Ioannis G. Kevrekidis,et al.  Coarse projective kMC integration: forward/reverse initial and boundary value problems , 2003, nlin/0307016.

[26]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..

[27]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[28]  Paul F. Tupper,et al.  LONG-TERM BEHAVIOUR OF LARGE MECHANICAL SYSTEMS WITH RANDOM INITIAL DATA , 2002 .

[29]  B. Matkowsky,et al.  Eigenvalues of the Fokker–Planck Operator and the Approach to Equilibrium for Diffusions in Potential Fields , 1981 .

[30]  Ioannis G. Kevrekidis,et al.  Equation-free multiscale computations for a lattice-gas model: coarse-grained bifurcation analysis of the NO+CO reaction on Pt(1 0 0) , 2004 .

[31]  Constantinos Theodoropoulos,et al.  Equation-Free Multiscale Computation: enabling microscopic simulators to perform system-level tasks , 2002 .

[32]  Ioannis G. Kevrekidis,et al.  Coarse Nonlinear Dynamics of Filling-Emptying Transitions: Water in Carbon Nanotubes , 2005 .

[33]  Eric Vanden Eijnden Numerical techniques for multi-scale dynamical systems with stochastic effects , 2003 .

[34]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[35]  Ioannis G. Kevrekidis,et al.  Coarse bifurcation analysis of kinetic Monte Carlo simulations: A lattice-gas model with lateral interactions , 2002 .

[36]  C. W. Gear,et al.  Equation-free modelling of evolving diseases: coarse-grained computations with individual-based models , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Andrew M. Stuart,et al.  White Noise Limits for Inertial Particles in a Random Field , 2003, Multiscale Model. Simul..

[39]  G. W. Ford,et al.  On the quantum langevin equation , 1987 .

[40]  C. Kelley,et al.  Newton-Krylov solvers for time-steppers , 2004, math/0404374.

[41]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[42]  Ioannis G. Kevrekidis,et al.  “Coarse” stability and bifurcation analysis using stochastic simulators: Kinetic Monte Carlo examples , 2001, nlin/0111038.

[43]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[44]  Alexander N Gorban,et al.  Ehrenfest's argument extended to a formalism of nonequilibrium thermodynamics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Stephen G. Brush,et al.  Collected Scientific Papers of Meghnad Saha , 1972 .

[46]  H. Kramers,et al.  Collected scientific papers , 1956 .