Crystal Structure of the Dengue Virus RNA-Dependent RNA Polymerase Catalytic Domain at 1.85-Angstrom Resolution

ABSTRACT Dengue fever, a neglected emerging disease for which no vaccine or antiviral agents exist at present, is caused by dengue virus, a member of the Flavivirus genus, which includes several important human pathogens, such as yellow fever and West Nile viruses. The NS5 protein from dengue virus is bifunctional and contains 900 amino acids. The S-adenosyl methionine transferase activity resides within its N-terminal domain, and residues 270 to 900 form the RNA-dependent RNA polymerase (RdRp) catalytic domain. Viral replication begins with the synthesis of minus-strand RNA from the dengue virus positive-strand RNA genome, which is subsequently used as a template for synthesizing additional plus-strand RNA genomes. This essential function for the production of new viral particles is catalyzed by the NS5 RdRp. Here we present a high-throughput in vitro assay partly recapitulating this activity and the crystallographic structure of an enzymatically active fragment of the dengue virus RdRp refined at 1.85-Å resolution. The NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains. The structure also reveals the presence of two zinc ion binding motifs. In the absence of a template strand, a chain-terminating nucleoside analogue binds to the priming loop site. These results should inform and accelerate the structure-based design of antiviral compounds against dengue virus.

[1]  S. Vasudevan,et al.  The Interdomain Region of Dengue NS5 Protein That Binds to the Viral Helicase NS3 Contains Independently Functional Importin β1 and Importin α/β-Recognized Nuclear Localization Signals* , 2002, The Journal of Biological Chemistry.

[2]  A. Rothman,et al.  Dengue Virus Nonstructural Protein NS5 Induces Interleukin-8 Transcription and Secretion , 2005, Journal of Virology.

[3]  Yen-Liang Chen,et al.  A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution. , 2007, Acta crystallographica. Section F, Structural biology and crystallization communications.

[4]  Ting Xu,et al.  Structure-Based Mutational Analysis of the NS3 Helicase from Dengue Virus , 2006, Journal of Virology.

[5]  C. Kao,et al.  Multiple interactions within the hepatitis C virus RNA polymerase repress primer-dependent RNA synthesis. , 2003, Journal of molecular biology.

[6]  E. G. Westaway Flavivirus replication strategy. , 1987, Advances in virus research.

[7]  David Rowlands,et al.  Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): structural evidence for nucleotide import and de-novo initiation. , 2003, Journal of molecular biology.

[8]  K. Murthy,et al.  Modulation of the Nucleoside Triphosphatase/RNA Helicase and 5′-RNA Triphosphatase Activities of Dengue Virus Type 2 Nonstructural Protein 3 (NS3) by Interaction with NS5, the RNA-dependent RNA Polymerase* , 2005, Journal of Biological Chemistry.

[9]  J. Blok Genetic relationships of the dengue virus serotypes. , 1985, The Journal of general virology.

[10]  K. Ng,et al.  Crystal Structure of Norwalk Virus Polymerase Reveals the Carboxyl Terminus in the Active Site Cleft* , 2004, Journal of Biological Chemistry.

[11]  A. Bartholomeusz,et al.  Flaviviridae polymerase and RNA replication , 1999, Journal of viral hepatitis.

[12]  Yi Guo,et al.  West Nile Virus 5′-Cap Structure Is Formed by Sequential Guanine N-7 and Ribose 2′-O Methylations by Nonstructural Protein 5 , 2006, Journal of Virology.

[13]  S. Harrison,et al.  RNA Synthesis in a Cage—Structural Studies of Reovirus Polymerase λ3 , 2002, Cell.

[14]  M. Rossmann,et al.  The structure of bovine viral diarrhea virus RNA-dependent RNA polymerase and its amino-terminal domain. , 2006, Structure.

[15]  Zheng Yin,et al.  Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus , 2006, Nature Structural &Molecular Biology.

[16]  M. Komatsu,et al.  The essential role of C-terminal residues in regulating the activity of hepatitis C virus RNA-dependent RNA polymerase. , 2002, Biochimica et biophysica acta.

[17]  S. You,et al.  In Vitro RNA Synthesis from Exogenous Dengue Viral RNA Templates Requires Long Range Interactions between 5′- and 3′-Terminal Regions That Influence RNA Structure* , 2001, The Journal of Biological Chemistry.

[18]  A. Thompson,et al.  Structural basis for proteolysis‐dependent activation of the poliovirus RNA‐dependent RNA polymerase , 2004, The EMBO journal.

[19]  Meitian Wang,et al.  Non-nucleoside Analogue Inhibitors Bind to an Allosteric Site on HCV NS5B Polymerase , 2003, The Journal of Biological Chemistry.

[20]  Charles A. Lesburg,et al.  Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site , 1999, Nature Structural Biology.

[21]  Zhi Hong,et al.  Recent advances in discovery and development of promising therapeutics against hepatitis C virus NS5B RNA-dependent RNA polymerase. , 2005, Mini reviews in medicinal chemistry.

[22]  C. Rice,et al.  Flavivirus genome organization, expression, and replication. , 1990, Annual review of microbiology.

[23]  S. Halstead,et al.  Pathogenesis of dengue: challenges to molecular biology. , 1988, Science.

[24]  S. Harrison,et al.  RNA synthesis in a cage--structural studies of reovirus polymerase lambda3. , 2002, Cell.

[25]  F. Rey,et al.  Structural Analysis of the Hepatitis C Virus RNA Polymerase in Complex with Ribonucleotides , 2002, Journal of Virology.

[26]  P. J. Wright,et al.  Synthesis of dengue virus RNA in vitro: initiation and the involvement of proteins NS3 and NS5 , 2005, Archives of Virology.

[27]  E. Koonin,et al.  Phylogeny of capsid proteins of small icosahedral RNA plant viruses. , 1991, The Journal of general virology.

[28]  E. Domingo,et al.  The structure of a protein primer–polymerase complex in the initiation of genome replication , 2006, The EMBO journal.

[29]  D. Gubler,et al.  Dengue and dengue hemorrhagic fever. , 2014 .

[30]  F. Rey,et al.  Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Vasudevan,et al.  A small region of the dengue virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the nuclear transport receptor importin-beta and the viral helicase, NS3. , 2001, The Journal of general virology.

[32]  M. Rossmann,et al.  The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Nuria Verdaguer,et al.  A comparison of viral RNA-dependent RNA polymerases. , 2006, Current opinion in structural biology.

[34]  A. Gamarnik,et al.  A 5' RNA element promotes dengue virus RNA synthesis on a circular genome. , 2006, Genes & development.

[35]  P. Desprès,et al.  Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases. , 2006, Virology.

[36]  D. Stuart,et al.  Continuous and discontinuous changes in the unit cell of HIV-1 reverse transcriptase crystals on dehydration. , 1998, Acta crystallographica. Section D, Biological crystallography.

[37]  S. Behrens,et al.  The RNA-dependent RNA polymerases of different members of the family Flaviviridae exhibit similar properties in vitro. , 1999, The Journal of general virology.

[38]  I. W. Cheney,et al.  Crystal Structure of Complete Rhinovirus RNA Polymerase Suggests Front Loading of Protein Primer , 2005, Journal of Virology.

[39]  E. Domingo,et al.  Structure of Foot-and-Mouth Disease Virus RNA-dependent RNA Polymerase and Its Complex with a Template-Primer RNA* , 2004, Journal of Biological Chemistry.

[40]  T. Steitz,et al.  Comparison of three different crystal forms shows HIV-1 reverse transcriptase displays an internal swivel motion. , 1994, Structure.

[41]  S. You,et al.  De Novo Synthesis of Negative-Strand RNA by Dengue Virus RNA-Dependent RNA Polymerase In Vitro: Nucleotide, Primer, and Template Parameters , 2003, Journal of Virology.

[42]  E. G. Westaway,et al.  Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. , 2001, Journal of virological methods.

[43]  M. James,et al.  Crystal Structures of Active and Inactive Conformations of a Caliciviral RNA-dependent RNA Polymerase* , 2002, The Journal of Biological Chemistry.

[44]  C. Kao,et al.  Mutational Analysis of Bovine Viral Diarrhea Virus RNA-Dependent RNA Polymerase , 1999, Journal of Virology.

[45]  R. Schlesinger,et al.  Dengue Viruses , 1977, Virology Monographs Die Virusforschung in Einzeldarstellungen.

[46]  T. Steitz,et al.  Structural biology: A mechanism for all polymerases , 1998, Nature.

[47]  Clemens Vonrhein,et al.  Crystal Structure of the RNA Polymerase Domain of the West Nile Virus Non-structural Protein 5* , 2007, Journal of Biological Chemistry.

[48]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[49]  G. Wengler,et al.  Terminal sequences of the genome and replicative-from RNA of the flavivirus West Nile virus: absence of poly(A) and possible role in RNA replication. , 1981, Virology.

[50]  N. Habuka,et al.  Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. , 1999, Structure.

[51]  Subhash G. Vasudevan,et al.  Structure of the Dengue Virus Helicase/Nucleoside Triphosphatase Catalytic Domain at a Resolution of 2.4 Å , 2005, Journal of Virology.

[52]  M. Ramachandra,et al.  Association between NS3 and NS5 Proteins of Dengue Virus Type 2 in the Putative RNA Replicase Is Linked to Differential Phosphorylation of NS5 (*) , 1995, The Journal of Biological Chemistry.

[53]  T. Steitz,et al.  Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. , 1992, Science.

[54]  Jean-Louis Romette,et al.  An RNA cap (nucleoside‐2′‐O‐)‐methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization , 2002, The EMBO journal.

[55]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[56]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[57]  J. Jiricny,et al.  RNA-dependent RNA polymerase of hepatitis C virus. , 1996, Methods in enzymology.

[58]  E. G. Westaway,et al.  trans-Complementation of Flavivirus RNA Polymerase Gene NS5 by Using Kunjin Virus Replicon-Expressing BHK Cells , 1998, Journal of Virology.

[59]  Y. Tan,et al.  Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. , 1996, Virology.

[60]  E. V. Makeyev,et al.  A mechanism for initiating RNA-dependent RNA polymerization , 2001, Nature.

[61]  Gabriel Waksman,et al.  Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation , 1998, The EMBO journal.

[62]  M. Guzmán,et al.  Dengue: an update. , 2002, The Lancet. Infectious diseases.

[63]  C. Cameron,et al.  A novel mechanism to ensure terminal initiation by hepatitis C virus NS5B polymerase. , 2001, Virology.

[64]  Anil Kumar,et al.  Nuclear Localization of Flavivirus RNA Synthesis in Infected Cells , 2006, Journal of Virology.

[65]  I Sauvaget,et al.  Identification of four conserved motifs among the RNA‐dependent polymerase encoding elements. , 1989, The EMBO journal.

[66]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.