Photocatalytic valorization of glycerol to hydrogen: Optimization of operating parameters by artificial neural network

[1]  D. Bahnemann,et al.  Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions , 1991 .

[2]  X. Liu,et al.  Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders , 1996 .

[3]  T. Ishibashi,et al.  Kinetics of the photocatalytic water-splitting reaction on TiO2 and Pt/TiO2 studied by time-resolved infrared absorption spectroscopy , 2003 .

[4]  Ali Hassanzadeh,et al.  The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions , 2005 .

[5]  M. Bowker,et al.  Photocatalytic methanol reforming on Au/TiO2 for hydrogen production , 2006 .

[6]  S. Yoshikawa,et al.  Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol–gel process with surfactant template , 2007 .

[7]  The photocatalytic reforming of methanol , 2007 .

[8]  D. Leung,et al.  Photocatalytic reforming of biomass: A systematic study of hydrogen evolution from glucose solution , 2008 .

[9]  M. Bowker,et al.  Photocatalytic Reforming of Glycerol over Gold and Palladium as an Alternative Fuel Source , 2009 .

[10]  A. Ghoshal,et al.  Al-MCM-41 catalyzed decomposition of polypropylene and hybrid genetic algorithm for kinetics analysis , 2008 .

[11]  Gongxuan Lu,et al.  Photo-catalytic H2 evolution over a series of Keggin-structure heteropoly blue sensitized Pt/TiO2 under visible light irradiation , 2009 .

[12]  Yuexiang Li,et al.  Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2 , 2009 .

[13]  Gongxuan Lu,et al.  Hydrogen Evolution Over Heteropoly Blue-Sensitized Pt/TiO2 Under Visible Light Irradiation , 2009 .

[14]  D. I. Kondarides,et al.  Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions , 2009 .

[15]  A. Khataee,et al.  UV/peroxydisulfate oxidation of C. I. Basic Blue 3: modeling of key factors by artificial neural network. , 2010 .

[16]  A. Khataee,et al.  Photoelectro-Fenton combined with photocatalytic process for degradation of an azo dye using supported TiO2 nanoparticles and carbon nanotube cathode: Neural network modeling , 2010 .

[17]  M. Bowker,et al.  Sustainable H2 gas production by photocatalysis , 2010 .

[18]  J. Niemantsverdriet Spectroscopy in Catalysis: An Introduction , 2010 .

[19]  G. Adami,et al.  CuO(x)-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions. , 2010, The journal of physical chemistry. A.

[20]  Triantafyllos A Albanis,et al.  Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation. , 2010, Journal of hazardous materials.

[21]  M. Subrahmanyam,et al.  Highly Stabilized and Finely Dispersed Cu2O/TiO2: A Promising Visible Sensitive Photocatalyst for Continuous Production of Hydrogen from Glycerol:Water Mixtures , 2010 .

[22]  D. Leung,et al.  Photocatalytic reforming of C3-polyols for H2 production: Part (I). Role of their OH groups , 2011 .

[23]  G. Adami,et al.  Nanostructured Cu/TiO2 Photocatalysts for H2 Production from Ethanol and Glycerol Aqueous Solutions. , 2011 .

[24]  M. A. Shah Growth of uniform nanoparticles of platinum by an economical approach at relatively low temperature , 2012 .

[25]  D. Skaf,et al.  Comparison of Photocatalytic Hydrogen Production from Glycerol and Crude Glycerol Obtained from Biodiesel Processing , 2012, Catalysis Letters.

[26]  Slamet,et al.  Photocatalytic hydrogen production from glycerol–water mixture over Pt‐N‐TiO2 nanotube photocatalyst , 2013 .

[27]  U. Pal,et al.  Biodiesel production from Jatropha curcas crude oil using ZnO/SiO2 photocatalyst for free fatty acids esterification , 2013 .

[28]  M. Subrahmanyam,et al.  Cobalt doped TiO2: A stable and efficient photocatalyst for continuous hydrogen production from glycerol: Water mixtures under solar light irradiation , 2013 .

[29]  I. Konstantinou,et al.  Optimization and Modeling of the Photocatalytic Degradation of the Insect Repellent DEET in Aqueous TiO2 Suspensions , 2013 .

[30]  D. Praveen Kumar,et al.  Nano-size effects on CuO/TiO2 catalysts for highly efficient H2 production under solar light irradiation. , 2013, Chemical communications.

[31]  J. Rodríguez,et al.  Hydrogen production using Pt-loaded TiO2 photocatalysts , 2013 .

[32]  M. Sturini,et al.  Swine sewage as sacrificial biomass for photocatalytic hydrogen gas production: Explorative study , 2014 .

[33]  M. Feilizadeh,et al.  Photocatalytic degradation of dibenzothiophene using La/PEG-modified TiO2 under visible light irradiation , 2015, Research on Chemical Intermediates.

[34]  V. Caratto,et al.  Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study , 2014, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[35]  E. Grabowska,et al.  The Photocatalytic Conversion of (Biodiesel Derived) Glycerol to Hydrogen - A Short Review and Preliminary Experimental Results Part 2: Photocatalytic Conversion of Glycerol to Hydrogen in Batch and Semi-batch Laboratory Reactors , 2014 .

[36]  M. Feilizadeh,et al.  Enhancement of Efficient Ag–S/TiO2 Nanophotocatalyst for Photocatalytic Degradation under Visible Light , 2014 .

[37]  L. A. Silva,et al.  Experimental design as a tool to study the reaction parameters in hydrogen production from photoinduced reforming of glycerol over CdS photocatalyst , 2014 .

[38]  M. Feilizadeh,et al.  Effects of electrophoretic deposition parameters on the photocatalytic activity of TiO2 films: Optimization by response surface methodology , 2014 .

[39]  M. Arai,et al.  Photocatalytic hydrogen production from glycerol and water with NiOx/TiO2 catalysts , 2014 .

[40]  B. K. Dutta,et al.  Impact of Glycerol as Scavenger for Solar Hydrogen Production from Water , 2014 .

[41]  R. Andreozzi,et al.  Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review , 2014 .

[42]  T. Do,et al.  Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. , 2015, Nanoscale.

[43]  O. Bondarchuk,et al.  Cu2O-sensitized TiO2 nanorods with nanocavities for highly efficient photocatalytic hydrogen production under solar irradiation , 2015 .

[44]  A. Amani‐Ghadim,et al.  Modeling of photocatalyatic process on synthesized ZnO nanoparticles: Kinetic model development and artificial neural networks , 2015 .

[45]  M. Feilizadeh,et al.  E. coli inactivation by visible light irradiation using a Fe–Cd/TiO2 photocatalyst: Statistical analysis and optimization of operating parameters , 2015 .

[46]  D. Sun-Waterhouse,et al.  Effect of TiO2 polymorph and alcohol sacrificial agent on the activity of Au/TiO2 photocatalysts for H2 production in alcohol–water mixtures , 2015 .

[47]  Shifu Chen,et al.  Photocatalytic reforming of glycerol for H2 evolution on Pt/TiO2: fundamental understanding the effect of co-catalyst Pt and the Pt deposition route , 2015 .

[48]  K. Vinodgopal,et al.  Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production. , 2015, Nanoscale.

[49]  Dunia E. Santiago,et al.  Comparative study of alcohols as sacrificial agents in H2 production by heterogeneous photocatalysis using Pt/TiO2 catalysts , 2015 .

[50]  Geoffrey I N Waterhouse,et al.  The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol–water mixtures , 2015 .

[51]  A. Petala,et al.  Hysteresis phenomena and rate fluctuations under conditions of glycerol photo-reforming reaction over CuOx/TiO2 catalysts , 2015 .

[52]  M. Feilizadeh,et al.  Optimization of operating parameters for efficient photocatalytic inactivation of Escherichia coli based on a statistical design of experiments. , 2015, Water science and technology : a journal of the International Association on Water Pollution Research.

[53]  Antonello Pasini,et al.  Artificial neural networks for small dataset analysis. , 2015, Journal of thoracic disease.

[54]  D. Sun-Waterhouse,et al.  Novel Au/TiO2 photocatalysts for hydrogen production in alcohol–water mixtures based on hydrogen titanate nanotube precursors , 2015 .

[55]  N. M. Mohamed,et al.  Hydrogen production from water photosplitting using Cu/TiO2 nanoparticles: Effect of hydrolysis rate and reaction medium , 2015 .

[56]  Photocatalytic removal of 2-nitrophenol using silver and sulfur co-doped TiO₂under natural solar light. , 2015, Water science and technology : a journal of the International Association on Water Pollution Research.

[57]  M. Karthik,et al.  Solar light sensitized p-Ag 2 O/n-TiO 2 nanotubes heterojunction photocatalysts for enhanced hydrogen production in aqueous-glycerol solution , 2016 .

[58]  R. Banerjee,et al.  Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm. , 2016, Bioresource technology.

[59]  Wataru Ueda,et al.  Glycerol hydrogenolysis into useful C3 chemicals , 2016 .

[60]  A. Puga,et al.  Photocatalytic production of hydrogen from biomass-derived feedstocks , 2016 .

[61]  S. Ehrman,et al.  A comprehensive study on sunlight driven photocatalytic hydrogen generation using low cost nanocrystalline Cu-Ti oxides , 2016 .

[62]  M. Arai,et al.  Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions , 2016 .

[63]  Xinhua Xu,et al.  High H2 Evolution from Quantum Cu(II) Nanodot-Doped Two-Dimensional Ultrathin TiO2 Nanosheets with Dominant Exposed {001} Facets for Reforming Glycerol with Multiple Electron Transport Pathways , 2016 .

[64]  Dunia E. Santiago,et al.  Study of the photocatalytic activity of Pt-modified commercial TiO2 for hydrogen production in the presence of common organic sacrificial agents , 2016 .

[65]  P. Fornasiero,et al.  Photocatalytic valorization of ethanol and glycerol over TiO 2 polymorphs for sustainable hydrogen production , 2016 .

[66]  R. Amal,et al.  Hydrogen evolution via glycerol photoreforming over Cu–Pt nanoalloys on TiO2 , 2016 .

[67]  V. Montes,et al.  A comparative study of hydrogen photocatalytic production from glycerol and propan-2-ol on M/TiO2 systems (M=Au, Pt, Pd) , 2017 .

[68]  M. Feilizadeh,et al.  Individual and interaction effects of operating parameters on the photocatalytic degradation under visible light illumination: Response surface methodological approach , 2017 .